首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

Background

Multiplex detection of low-level mutant alleles in the presence of wild-type DNA would be useful for several fields of medicine including cancer, pre-natal diagnosis and infectious diseases. COLD-PCR is a recently developed method that enriches low-level mutations during PCR cycling, thus enhancing downstream detection without the need for special reagents or equipment. The approach relies on the differential denaturation of DNA strands which contain Tm-lowering mutations or mismatches, versus ‘homo-duplex’ wild-type DNA. Enabling multiplex-COLD-PCR that can enrich mutations in several amplicons simultaneously is desirable but technically difficult to accomplish. Here we describe the proof of principle of an emulsion-PCR based approach that demonstrates the feasibility of multiplexed-COLD-PCR within a single tube, using commercially available mutated cell lines. This method works best with short amplicons; therefore, it could potentially be used on highly fragmented samples obtained from biological material or FFPE specimens.

Methods

Following a multiplex pre-amplification of TP53 exons from genomic DNA, emulsions which incorporate the multiplex product, PCR reagents and primers specific for a given TP53 exon are prepared. Emulsions with different TP53 targets are then combined in a single tube and a fast-COLD-PCR program that gradually ramps up the denaturation temperature over several PCR cycles is applied (temperature-tolerant, TT-fast-eCOLD-PCR). The range of denaturation temperatures applied encompasses the critical denaturation temperature (Tc) corresponding to all the amplicons included in the reaction, resulting to a gradual enrichment of mutations within all amplicons encompassed by emulsion.

Results

Validation for TT-fast-eCOLD-PCR is provided for TP53 exons 6–9. Using dilutions of mutated cell-line into wild-type DNA, we demonstrate simultaneous mutation enrichment between 7 to 15-fold in all amplicons examined.

Conclusions

TT-fast-eCOLD-PCR expands the versatility of COLD-PCR and enables high-throughput enrichment of low-level mutant alleles over multiple sequences in a single tube.  相似文献   

2.
Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid—locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation.  相似文献   

3.
Electrophoresis continues to be a mainstay in molecular genetic laboratories for checking, sizing and separating both PCR products, nucleic acids derived from in vivo or in vitro sources and nucleic acid–protein complexes. Many genomic and genetic applications demand high throughput, such as the checking of amplification products from many loci, from many clones, from many cell lines or from many individuals at once. These applications include microarray resource development and expression analysis, genome mapping, library and DNA bank screening, mutagenesis experiments and single nucleotide polymorphism (SNP) genotyping. PCR hardware compatible with industry standard 96 and 384 well microplates is commonplace. We have previously described a simple system for submerged horizontal 96 and 192 well polyacrylamide or agarose microplate array diagonal gel electrophoresis (MADGE) which is microplate compatible and suitable for PCR checking, SNP typing (restriction fragment length polymorphism or amplification refractory mutation system), microsatellite sizing and identification of unknown mutations. By substantial redesign of format and operations, we have derived an efficient ‘dry’ gel system that enables direct 96 pin manual transfer from PCR or other reactions in microplates, into 768 or 384 well gels. Combined with direct electrode contact in clamshell electrophoresis boxes which plug directly to contacts in a powered stacking frame and using 5–10 min electrophoresis times, it would be possible (given a sufficient supply of PCRs for examination) for 1 million gel tracks to be run per day for a minimal hardware investment and at minimal reagent costs. Applications of this system for PCR checking and SNP genotyping are illustrated.  相似文献   

4.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37°C. Of recombinant clones that failed to express xylE at 37°C, about 10% expressed the gene when grown at 22°C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

5.
Recent development of the long PCR technology has provided an invaluable tool in many areas of molecular biology. However, long PCR amplification fails whenever the DNA template is imperfectly preserved. We report that Escherichia coli exonuclease III, a major repair enzyme in bacteria, strikingly improves the long PCR amplification of damaged DNA templates. Escherichia coli exonuclease III permitted or improved long PCR amplification with DNA samples submitted to different in vitro treatments known to induce DNA strand breaks and/or apurinic/apyrimidinic (AP) sites, including high temperature (99°C), depurination at low pH and near-UV radiation. Exonuclease III also permitted or improved amplification with DNA samples that had been isolated several years ago by the phenol/chloroform method. Amelioration of long PCR amplification was achieved for PCR products ranging in size from 5 to 15.4 kb and with DNA target sequences located either within mitochondrial DNA or the nuclear genome. Exonuclease III increased the amplification of damaged templates using either rTth DNA polymerase alone or rTth plus Vent DNA polymerases or Taq plus Pwo DNA polymerases. However, exonuclease III could not improve PCR amplification from extensively damaged DNA samples. In conclusion, supplementation of long PCR mixes with E.coli exonuclease III may represent a major technical advance whenever DNA samples have been partly damaged during isolation or subsequent storage.  相似文献   

6.
hMTH1 protects against mutation during oxidative stress. It degrades 8‐oxodGTP to exclude potentially mutagenic oxidized guanine from DNA. hMTH1 expression is linked to ageing. Its downregulation in cultured cells accelerates RAS‐induced senescence, and its overexpression in hMTH1‐Tg mice extends lifespan. In this study, we analysed the effects of a brief (5 weeks) high‐fat diet challenge (HFD) in young (2 months old) and adult (7 months old) wild‐type (WT) and hMTH1‐Tg mice. We report that at 2 months, hMTH1 overexpression ameliorated HFD‐induced weight gain, changes in liver metabolism related to mitochondrial dysfunction and oxidative stress. It prevented DNA damage as quantified by a comet assay. At 7 months old, these HFD‐induced effects were less severe and hMTH1‐Tg and WT mice responded similarly. hMTH1 overexpression conferred lifelong protection against micronucleus induction, however. Since the canonical activity of hMTH1 is mutation prevention, we conclude that hMTH1 protects young mice against HFD by reducing genome instability during the early period of rapid growth and maximal gene expression. hMTH1 protection is redundant in the largely non‐growing, differentiated tissues of adult mice. In hMTH1‐Tg mice, expression of a less heavily mutated genome throughout life provides a plausible explanation for their extended longevity.  相似文献   

7.
The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at −9°C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 × 107 cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at −2°C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years.  相似文献   

8.
The influence of cold stress at 4 and 0°C on the detection time as assessed by impedance technology (Bactometer; Biomérieux, Marcy l’Etoile, France) of different enterohemorrhagic Escherichia coli (EHEC) strains was determined. Although there is some variation in susceptibility among EHEC strains, prolonged exposure of EHEC to cold stress, i.e., 4 and 5 days at 4 and 0°C, respectively, in general significantly increased their detection time. This reflects an increase of the lag-phase time caused by cold stress. Two EHEC strains were selected to determine the minimum preliminary enrichment time that would ensure a positive PCR detection of low numbers of verotoxin-producing E. coli (VTEC; 2 to 2 × 105 CFU/25 g) inoculated into ground beef (25 g) and stored at 4 or −20°C for 8 and 14 days, respectively. Incubation times of 6 and 9 h of 1 to 10 CFU/g and 1 to 10 CFU/25 g, respectively, were sufficient for PCR detection of VTEC in ground beef when analysis was performed immediately after inoculation (no cold stress). When cells are exposed to cold stress (4 or −20°C) a 24-h enrichment period is recommended. Restriction of enrichment time to 9 h under these circumstances decreases the sensitivity of PCR detection to 80 CFU/g. Hence, to obtain maximum sensitivity, PCR detection of VTEC in naturally contaminated ground beef should be performed after 24 h of enrichment.  相似文献   

9.
This paper compares five commercially available DNA extraction methods with respect to DNA extraction efficiency of Salmonella enterica serovar Enteritidis from soil, manure, and compost and uses an Escherichia coli strain harboring a plasmid expressing green fluorescent protein as a general internal procedural control. Inclusion of this general internal procedural control permitted more accurate quantification of extraction and amplification of S. enterica serovar Enteritidis in these samples and reduced the possibility of false negatives. With this protocol it was found that the optimal extraction method differed for soil (Mobio soil DNA extraction kit), manure (Bio101 soil DNA extraction kit), and compost (Mobio fecal DNA extraction kit). With each method, as little as 1.2 × 103 to 1.8 × 103 CFU of added serovar Enteritidis per 100 mg of substrate could be detected by direct DNA extraction and subsequent S. enterica-specific TaqMan PCR. After bacterial enrichment, as little as 1 CFU/100 mg of original substrate was detected. Finally, the study presents a more accurate molecular analysis for quantification of serovar Enteritidis initially present in soil or manure using DNA extraction and TaqMan PCR.  相似文献   

10.
A set of PCR primers targeting 16S rRNA gene sequences was designed, and PCR parameters were optimized to develop a robust and reliable protocol for selective amplification of Escherichia coli 16S rRNA genes. The method was capable of discriminating E. coli from other enteric bacteria, including its closest relative, Shigella. Selective amplification of E. coli occurred only when the annealing temperature in the PCR was elevated to 72°C, which is 10°C higher than the optimum for the primers. Sensitivity was retained by modifying the length of steps in the PCR, by increasing the number of cycles, and most importantly by optimizing the MgCl2 concentration. The PCR protocol developed can be completed in less then 2 h and, by using Southern hybridization, has a detection limit of ca. 10 genomic equivalents per reaction. The method was demonstrated to be effective for detecting E. coli DNA in heterogeneous DNA samples, such as those extracted from soil.  相似文献   

11.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70°C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30°C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 × 103 spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

12.
In this paper we describe optimization of SYBR Green I-based real-time PCR parameters and testing of a large number of microbial species with vvh-specific oligonucleotide primers to establish a rapid, specific, and sensitive method for detection of Vibrio vulnificus in oyster tissue homogenate and Gulf of Mexico water (gulf water). Selected oligonucleotide primers for the vvh gene were tested for PCR amplification of a 205-bp DNA fragment with a melting temperature of approximately 87°C for 84 clinical and environmental strains of V. vulnificus. No amplification was observed with other vibrios or nonvibrio strains with these primers. The minimum level of detection by the real-time PCR method was 1 pg of purified genomic DNA or 102 V. vulnificus cells in 1 g of unenriched oyster tissue homogenate or 10 ml of gulf water. It was possible to improve the level of detection to one V. vulnificus cell in samples that were enriched for 5 h. The standard curves prepared from the real-time PCR cycle threshold values revealed that there was a strong correlation between the number of cells in unenriched samples and the number of cells in enriched samples. Detection of a single cell of V. vulnificus in 1 g of enriched oyster tissue homogenate is in compliance with the recent Interstate Shellfish Sanitation Conference guidelines. The entire detection method, including sample processing, enrichment, and real-time PCR amplification, was completed within 8 h, making it a rapid single-day assay. Rapid and sensitive detection of V. vulnificus would ensure a steady supply of postharvest treated oysters to consumers, which should help decrease the number of illnesses or outbreaks caused by this pathogen.  相似文献   

13.
Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to tRNA and is critical for protein biosynthesis. We identified biallelic missense mutations in MARS in a specific form of pediatric pulmonary alveolar proteinosis (PAP), a severe lung disorder that is prevalent on the island of Réunion and the molecular basis of which is unresolved. Mutations were found in 26 individuals from Réunion and nearby islands and in two families from other countries. Functional consequences of the mutated alleles were assessed by growth of wild-type and mutant strains and methionine-incorporation assays in yeast. Enzyme activity was attenuated in a liquid medium without methionine but could be restored by methionine supplementation. In summary, identification of a founder mutation in MARS led to the molecular definition of a specific type of PAP and will enable carrier screening in the affected community and possibly open new treatment opportunities.  相似文献   

14.
《Genome biology》2013,14(10):R113

Background

Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process.

Results

To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway.

Conclusion

This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation.  相似文献   

15.
Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.  相似文献   

16.
Short oligonucleotide mass analysis (SOMA) is a technique by which small sequences of mutated and wild-type DNA, produced by PCR amplification and restriction digestion, are characterized by HPLC-electrospray ionization tandem mass spectrometry. We have adapted the method to specifically detect two common point mutations at codon 12 of the c-K-ras gene. Mutations in DNA from 121 colon tumor samples were identified by SOMA and validated by comparison with sequencing. SOMA correctly identified 26 samples containing the 12GAT mutation and four samples containing the 12AGT mutation. Sequencing did not reveal mutant DNA in three samples out of the 26 samples shown by SOMA to contain the 12GAT mutation. In these three samples, the presence of mutant DNA was confirmed by SOMA analysis after selective PCR amplification in the presence of BstN1 restriction enzyme. Additional mutations in codons 12 and 13 were revealed by sequencing in 24 additional samples, and their presence did not interfere with the correct identification of G to A or G to T mutations in codon 12. These results provide the basis for a sensitive and specific method to detect c-K-ras codon 12-mutated DNA at levels below 10–12% of wild-type DNA.  相似文献   

17.
BackgroundPappalysin 2 (PAPPA2) mutation, occurring most frequently in skin cutaneous melanoma (SKCM) and non‐small cell lung cancer (NSCLC), is found to be related to anti‐tumour immune response. However, the association between PAPPA2 and the efficacy of immune checkpoint inhibitors (ICIs) therapy remains unknown.MethodsTo analyse the performance of PAPPA2 mutation as an indicator stratifying beneficiaries of ICIs, seven public cohorts with whole‐exome sequencing (WES) data were divided into the NSCLC set (n = 165) and the SKCM set (n = 210). For further validation, 41 NSCLC patients receiving anti‐PD‐(L)1 treatment were enrolled in China cohort (n = 41). The mechanism was explored based on The Cancer Genome Atlas database (n = 1467).ResultsIn the NSCLC set, patients with PAPPA2 mutation (PAPPA2‐Mut) demonstrated a significantly superior progress free survival (PFS, hazard ratio [HR], 0.28 [95% CI, 0.14–0.53]; p < 0.001) and objective response rate (ORR, 77.8% vs. 23.2%; p < 0.001) compared to those with wide‐type PAPPA2 (PAPPA2‐WT), consistent in the SKCM set (overall survival, HR, 0.49 [95% CI: 0.31–0.78], p < 0.001; ORR, 34.1% vs. 16.9%, p = 0.039) and China cohort. Similar results were observed in multivariable models. Accordingly, PAPPA2 mutation exhibited superior performance in predicting ICIs efficacy compared with other published ICIs‐related gene mutations, such as EPHA family, MUC16, LRP1B and TTN, etc. In addition, combined utilization of PAPPA2 mutation and tumour mutational burden (TMB) could expand the identification of potential responders to ICIs therapy in both NSCLC set (HR, 0.36 [95% CI: 0.23–0.57], p < 0.001) and SKCM set (HR, 0.51 [95% CI: 0.34–0.76], p < 0.001). Moreover, PAPPA2 mutation was correlated with enhanced anti‐tumour immunity including higher activated CD4 memory T cells level, lower Treg cells level, and upregulated DNA damage repair pathways.ConclusionsOur findings indicated that PAPPA2 mutation could serve as a novel indicator to stratify beneficiaries from ICIs therapy in NSCLC and SKCM, warranting further prospective studies.

Flow diagram of the study. (A) Preliminary analysis. PAPPA2 mutated most frequently in skin cutaneous melanoma (SKCM) and non‐small cell lung cancer (NSCLC) in the The Cancer Genome Atlas (TCGA) database. PAPPA2 mutational rates in patients with objective response (CR + PR) versus without (SD + PD) were compared with other immune checkpoint inhibitors‐related gene mutations in the NSCLC and SKCM sets. (B) Biomarker development. Association between PAPPA2 mutation and clinical outcomes has been analysed in the NSCLC set, the SKCM set and China cohort. (C) Mechanism exploring. Based on the TCGA database, the correlation of PAPPA2 mutation with tumour mutation burden, infiltrating immune cells and DNA damage repair was explored for further immunogenicity and anti‐tumour activity mechanisms.  相似文献   

18.
Background and induced germline mutagenesis and other genotoxicity studies have been hampered by the lack of a sufficiently sensitive technique for detecting mutations in a small cluster of cells or a single cell in a tissue sample composed of millions of cells. The most frequent type of genetic alteration is intragenic. The vast majority of oncogenic mutations in human and mammalian cancer involves only single base substitutions. We have developed universally applicable techniques that not only provide the necessary sensitivity and specificity for site specific mutagenesis studies, but also identify the point mutation. The exponential amplification procedures of polymerase chain reaction (PCR) and ligase chain reaction (LCR) have been combined with restriction endonuclease (RE) digestion to enable the selective enrichment and detection of single base substitution mutations in human oncogenic loci at a sensitivity of one mutant in more than 107 wild type alleles. These PCR/RE/LCR procedures have been successfully designed and used for codons 12 and 248 of the Ha-ras and p53 genes, respectively, both of which contain a natural MspI restriction endonuclease recognition sequence. These procedures have also been adapted for the detection and identification of mutations in oncogenic loci that do not contain a natural restriction endonuclease recognition sequence. Using PCR techniques, a HphI site was incorporated into the codons 12/13 region of the human N-ras gene, which was then used for the selective enrichment of mutants at this oncogenic locus. These PCR/RE/LCR procedures for base substitution mutations in codon 12 of the N-ras gene were found to have the sensitivity of detection of at least one mutant allele in the presence of the DNA equivalent of 106 wild type cells. Only one peripheral blood leukocyte DNA specimen out of nine normal individuals displayed an observable Ha-ras mutation that was present at frequency between 10−5 and 10−6. These PCR/RE/LCR techniques for detecting and identifying base substitution mutations are universally applicable to almost any locus or base site within the human or animal genome. With the added advantage of the adjustability of both the amount of DNA (number of genomes) to be tested and the sensitivity (10−2 to 10−7) of the assay selection or enrichment procedures, these PCR/RE/LCR techniques will be useful in addressing a broad range of important questions in mutagenesis and carcinogenesis.  相似文献   

19.
Magnetic capture-hybridization PCR (MCH-PCR) was used for the detection of 36 verotoxigenic (verotoxin [VT]-producing) Escherichia coli (VTEC), 5 VTEC reference, and 13 non-VTEC control cultures. The detection system employs biotin-labeled probes to capture the DNA segments that contain specific regions of the genes for VT1 and VT2 by DNA-DNA hybridization. The hybrids formed were isolated by streptavidin-coated magnetic beads which were collected by a magnetic particle separator and, subsequently, amplified directly by conventional PCR. The detection system was found to be specific for VTEC: no amplification was obtained from non-VTEC controls, whereas VTEC isolates tested positive for one or two specific PCR products. With 5, 7, or 10 h of enrichment, the limits of detection were 103, 102, and 100 CFU/ml, respectively, by agarose gel electrophoresis. Southern hybridization did not seem to improve the limit of the detection. When applied to food, MCH-PCR was capable of detecting 100 CFU of VTEC per g of ground beef with 15 h of nonselective enrichment. The results of MCH-PCR for pure cultures of VT1- and/or VT2-producing E. coli cells were in total agreement with toxin production as measured by a VT enzyme-linked immunosorbent assay.  相似文献   

20.
The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔC q method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号