首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.  相似文献   

2.

Background

t(9;22) is a balanced translocation, and the chromosome 22 breakpoints (Philadelphia chromosome – Ph+) determine formation of different fusion genes that are associated with either Ph+ acute lymphatic leukemia (Ph+ ALL) or chronic myeloid leukemia (CML). The “minor” breakpoint in Ph+ ALL encodes p185BCR/ABL from der22 and p96ABL/BCR from der9. The “major” breakpoint in CML encodes p210BCR/ABL and p40ABL/BCR. Herein, we investigated the leukemogenic potential of the der9-associated p96ABL/BCR and p40ABL/BCR fusion proteins and their roles in the lineage commitment of hematopoietic stem cells in comparison to BCR/ABL.

Methodology

All t(9;22) derived proteins were retrovirally expressed in murine hematopoietic stem cells (SL cells) and human umbilical cord blood cells (UCBC). Stem cell potential was determined by replating efficiency, colony forming - spleen and competitive repopulating assays. The leukemic potential of the ABL/BCR fusion proteins was assessed by in a transduction/transplantation model. Effects on the lineage commitment and differentiation were investigated by culturing the cells under conditions driving either myeloid or lymphoid commitment. Expression of key factors of the B-cell differentiation and components of the preB-cell receptor were determined by qRT-PCR.

Principal Findings

Both p96ABL/BCR and p40ABL/BCR increased proliferation of early progenitors and the short term stem cell capacity of SL-cells and exhibited own leukemogenic potential. Interestingly, BCR/ABL gave origin exclusively to a myeloid phenotype independently from the culture conditions whereas p96ABL/BCR and to a minor extent p40ABL/BCR forced the B-cell commitment of SL-cells and UCBC.

Conclusions/Significance

Our here presented data establish the reciprocal ABL/BCR fusion proteins as second oncogenes encoded by the t(9;22) in addition to BCR/ABL and suggest that ABL/BCR contribute to the determination of the leukemic phenotype through their influence on the lineage commitment.  相似文献   

3.
ObjectivesDespite advances in the development of novel targeted therapies, the need for B-ALL alternative treatments has not been met. Anlotinib could blunt the proangiogenic activity of VEGFR, PDGFR, and FGFR, and has shown strong antitumor activities across multiple tumors. However, anlotinib cytotoxicity against B-ALL has not ever been evaluated, thus prompting us to initiate this study.MethodsExpression2Kinases program was used to identify potential treatment targets. Cell viability and apoptosis were determined by CCK-8 and Annexin V/PI staining kit, respectively. qRT-PCR and Western blotting were utilized to investigate the molecular mechanisms. In vivo antileukemia activity of Anlotinib was evaluated in a Ph+ B-ALL patient-Derived Xenograft (PDX) model.ResultsCompared with treatment-naive B-ALL cases, RR B-ALL patients had higher activities in the VEGF/VEGFR signaling and the PI3K/AKT/mTOR pathway. Exposure of Ph and Ph+ B-ALL cells to anlotinib resulted in significant cell viability reduction, apoptosis enhancement, and cell cycle arrest at G2/M phase. Importantly, anlotinib treatment led to remarkably decreased leukemia burdens and extended the survival period in a Ph+ B-ALL PDX model. Blockade of the role of the proangiogenic mediators, comprising VEGFR2, PDGFR-beta, and FGFR3, played a critical role in the cytotoxicity of anlotinib against Ph and Ph+ B-ALL. Moreover, anlotinib dampened the activity of PI3K/AKT/mTOR pathway that resides in the convergence of the three mentioned proangiogenic signals.ConclusionThis work provides impressive preclinical evidence of anlotinib against Ph and Ph+ B-ALL and raises a rationale for future clinical evaluation of this drug in the management of Ph and Ph+ B-ALL.  相似文献   

4.
The presence of the Philadelphia chromosome in patients with acute lymphoblastic leukemia (Ph+ALL) is a negative prognostic indicator. Tyrosine kinase inhibitors (TKI) that target BCR/ABL, such as imatinib, have improved treatment of Ph+ALL and are generally incorporated into induction regimens. This approach has improved clinical responses, but molecular remissions are seen in less than 50% of patients leaving few treatment options in the event of relapse. Thus, identification of additional targets for therapeutic intervention has potential to improve outcomes for Ph+ALL. The human epidermal growth factor receptor 2 (ErbB2) is expressed in ∼30% of B-ALLs, and numerous small molecule inhibitors are available to prevent its activation. We analyzed a cohort of 129 ALL patient samples using reverse phase protein array (RPPA) with ErbB2 and phospho-ErbB2 antibodies and found that activity of ErbB2 was elevated in 56% of Ph+ALL as compared to just 4.8% of PhALL. In two human Ph+ALL cell lines, inhibition of ErbB kinase activity with canertinib resulted in a dose-dependent decrease in the phosphorylation of an ErbB kinase signaling target p70S6-kinase T389 (by 60% in Z119 and 39% in Z181 cells at 3 µM). Downstream, phosphorylation of S6-kinase was also diminished in both cell lines in a dose-dependent manner (by 91% in both cell lines at 3 µM). Canertinib treatment increased expression of the pro-apoptotic protein Bim by as much as 144% in Z119 cells and 49% in Z181 cells, and further produced caspase-3 activation and consequent apoptotic cell death. Both canertinib and the FDA-approved ErbB1/2-directed TKI lapatinib abrogated proliferation and increased sensitivity to BCR/ABL-directed TKIs at clinically relevant doses. Our results suggest that ErbB signaling is an additional molecular target in Ph+ALL and encourage the development of clinical strategies combining ErbB and BCR/ABL kinase inhibitors for this subset of ALL patients.  相似文献   

5.
6.

Backgroud

Cancer stem cells (CSCs) are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Development of specific therapies targeted at CSCs holds hope for the improvement of survival and quality of life of cancer patients, especially for sufferers of metastatic disease. This is particularly true in chronic myeloid leukemia (CML).

Methods

In this study, we isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of Philadelphia chromosome-positive (Ph+) patients with stem cells property. We examined their biological characteristics as well as immunological function and further detected the possible molecular mechanism involved in the leukemia genesis.

Results

We showed that CML patient-derived Flk1+CD31?CD34? MSCs had normal morphology, phenotype and karyotype but appeared impaired immunomodulatory function. The capacity of Flk1+CD31?CD34? MSCs from CML patients to inhibit T lymphocyte activation and proliferation was impaired in vitro. CML patient-derived MSCs have dampening immunomodulatory functions, suggesting that the dysregulation of hematopoiesis and immune response might originate from MSCs rather than HSCs. These Ph+ putative CML hemangioblast upregulated TGF-β1 and resultantly activated matrix metalloproteinase-9 (MMP-9) to enhance s-KitL and s-ICAM-1 secretion, which activated c-kit+ HSCs from the quiescent state to proliferative state. Further studies showed that phosphatidylinositol-3 kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was involved in CML pathogenesis.

Conclusions

Flk1+CD31?CD34? MSCs that express BCR/ABL leukemia oncogene are CSCs of CML and they play a critical role in the progression of CML through PI3K/Akt/NF-κB/MMP-9/s-ICAM-1/s-KitL signaling pathway beyond HSCs.  相似文献   

7.

Background

The tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF-IR) contributes to the initiation and progression of many types of malignancies. We previously showed that IGF-2, which binds IGF-IR, is an extrinsic factor that supports the ex vivo expansion of hematopoietic stem cells (HSCs). We also demonstrated that IGF-IR is not required for HSC activity in vivo.

Methods and results

Here we investigated the role of IGF-IR in chronic myeloid leukemia (CML) using the retroviral BCR/ABL transplantation mouse model. Existing antibodies against IGF-IR are not suitable for flow cytometry; therefore, we generated a fusion of the human IgG Fc fragment with mutant IGF-2 that can bind to IGF-IR. We used this fusion protein to evaluate mouse primary hematopoietic populations. Through transplantation assays with IGF-IR+ and IGF-IR cells, we demonstrated that IGF-IR is expressed on all mouse HSCs. The expression of IGF-IR is much higher on CML cells than on acute lymphoblastic leukemia (ALL) cells. The depletion of IGF-IR expression in BCR/ABL+ cells led to the development of ALL (mostly T cell ALL) but not CML. Lack of IGF-IR resulted in decreased self-renewal of the BCR/ABL+ CML cells in the serial replating assay.

Conclusion

IGF-IR regulates the cell fate determination of BCR/ABL+ leukemia cells and supports the self-renewal of CML cells.  相似文献   

8.
9.
Interactions between the proteasome inhibitor, bortezomib, and the sphingosine kinase (SPK1) inhibitor, SKI, were examined in BCR/ABL human leukemia cells. Coexposure of K562 or chronic myeloid leukemia (CML) cells from patients to subtoxic concentrations of SKI (10 μM) and bortezomib (100 nM) resulted in a synergistic increase in caspase-3 cleavage and apoptosis. These events were associated with the downregulation of BCR–ABL and Mcl-1, and a marked reduction in SPK1 expression. In imatinib mesylate-resistant K562 cells that displayed decreased BCR–ABL expression, bortezomib/SKI treatment markedly increased apoptosis and inhibited colony-formation in association with the downregulation of Mcl-1. Finally, the bortezomib/SKI regimen also potently induced the downregulation of BCR/ABL and Mcl-1 in human leukemia cells. Collectively, these findings suggest that combining SKI and bortezomib may represent a novel strategy in leukemia, including apoptosis-resistant BCR–ABL+ hematologic malignancies.  相似文献   

10.
11.
PAX5 is a tumor suppressor in B-ALL, while the role of PAX5 fusion proteins in B-ALL development is largely unknown. Here, we studied the function of PAX5-ETV6 and PAX5-FOXP1 in mice expressing these proteins from the Pax5 locus. Both proteins arrested B-lymphopoiesis at the pro-B to pre-B-cell transition and, contrary to their proposed dominant-negative role, did not interfere with the expression of most regulated Pax5 target genes. Pax5-Etv6, but not Pax5-Foxp1, cooperated with loss of the Cdkna2a/b tumor suppressors in promoting B-ALL development. Regulated Pax5-Etv6 target genes identified in these B-ALLs encode proteins implicated in pre-B-cell receptor (BCR) signaling and migration/adhesion, which could contribute to the proliferation, survival, and tissue infiltration of leukemic B cells. Together with similar observations made in human PAX5-ETV6+ B-ALLs, these data identified PAX5-ETV6 as a potent oncoprotein that drives B-cell leukemia development.  相似文献   

12.

Background

Agriculture organic dust exposures induce lung disease with lymphoid aggregates comprised of both T and B cells. The precise role of B cells in mediating lung inflammation is unknown, yet might be relevant given the emerging role of B cells in obstructive pulmonary disease and associated autoimmunity.

Methods

Using an established animal model, C57BL/6 wild-type (WT) and B-cell receptor (BCR) knock-out (KO) mice were repetitively treated with intranasal inhalation of swine confinement organic dust extract (ODE) daily for 3 weeks and lavage fluid, lung tissues, and serum were collected.

Results

ODE-induced neutrophil influx in lavage fluid was not reduced in BCR KO animals, but there was reduction in TNF-α, IL-6, CXCL1, and CXCL2 release. ODE-induced lymphoid aggregates failed to develop in BCR KO mice. There was a decrease in ODE-induced lung tissue CD11c+CD11b+ exudative macrophages and compensatory increase in CD8+ T cells in lavage fluid of BCR KO animals. Compared to saline, there was an expansion of conventional B2-, innate B1 (CD19+CD11b+CD5+/?)-, and memory (CD19+CD273+/-CD73+/?) B cells following ODE exposure in WT mice. Autoreactive responses including serum IgG anti-citrullinated protein antibody (ACPA) and anti-malondialdehyde-acetaldehyde (MAA) autoantibodies were increased in ODE treated WT mice as compared to saline control. B cells and serum immunoglobulins were not detected in BCR KO animals.

Conclusions

Lung tissue staining for citrullinated and MAA modified proteins were increased in ODE-treated WT animals, but not BCR KO mice. These studies show that agriculture organic dust induced lung inflammation is dependent upon B cells, and dust exposure induces an autoreactive response.
  相似文献   

13.
The oncogenic BCR/ABL tyrosine kinase induces constitutive enhanced “spontaneous” DNA damage and unfaithful repair in Philadelphia chromosome positive leukemia cells. Here, we investigated the changes of protein profile in H2O2-induced DNA damage/repair in BaF3-MIGR1 and BaF3-BCR/ABL cells through a proteomic strategy consisting of two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF mass spectrometry. In total, 41 spots were differentially expressed and 13 proteins were identified with further MS analysis. Two essential proteins, Proto-oncogene tyrosine–protein kinase ABL1 (c-ABL) and Heat shock 70 kDa protein 4 (Apg-2), were confirmed by Western blot and showed consistent changes with proteomic results. Moreover, functional analysis demonstrated that inhibition of Apg-2 not only decreased cell proliferation, but also induced cell apoptosis in BCR/ABL positive cells (BaF3-BCR/ABL, BaF3-BCR/ABLT315I). We also proved that Apg-2 inhibition aggravated H2O2 induced damage in BCR/ABL positive cells, and enhanced the sensitivity of BaF3-BCR/ABLT315I to STI571. Taken together, the findings in this work provide us with some clues to a better understanding of the molecular mechanisms underlying BCR/ABL in the DNA damage/repair processes and demonstrated that Apg-2 would be a valid target for anti-leukemia drug development.  相似文献   

14.
Ex vivo proliferation and differentiation of Philadelphia chromosome-positive (Ph+) human myeloid cells (Ph+ cells) from chronic myeloid leukemia (CML) proceed via alternation stages of cell proliferation and neutrophil maturation. To regulate them, apoptosis is alternately blocked or induced with the help of neutrophils and expression of bcr/abl, bax, and bcl2. The regulation of apoptosis in main types of Ph+ cells depends on the alternation of (1) Ph+ cell proliferation and (2) neutrophil maturation and may follow two pathways. One consists in alternating blockages and inductions of apoptosis with initial maturation and subsequent proliferation under alternation stages as (2)-(1)-(2) and has not been described as yet. Neutrophil accumulation blocks apoptosis. As neutrophils are depleted, apoptosis is induced again. Its block accelerates proliferation with a new accumulation of neutrophils, which is followed by regular neutrophil death and a new induction of apoptosis. The way optimizes the proliferation efficiency (P/D index) with a regular alternation of maturation and proliferation, allowing the cycle of proliferation and differentiation to be completed. In another way, the alternation starts with proliferation as (1)-(2)-(1) at a lower neutrophil content) and leads to resistant decrease of the maximal apoptosis level by a factor of 3–8 as compared with (2)-(1)-(2) alternation. A stable block of apoptosis is observed in cells with prolonged stages of proliferation and maturation, leading to an accumulation of blasts and myelocytes with elevated bcr/abl expression and expression of bcl2 > bax. A stable block of apoptosis is associated with CML progression and in Ph+ cell lines. Cells follow the first pathway of the apoptotic regulation in chronic-phase CML. Ex vivo cultivation of Ph+ cells from individual CML patients was assumed to provide for a more exact diagnosis of the CML phase and optimizing the treatment.  相似文献   

15.
IL6 is a multifunctional cytokine that drives terminal B cell differentiation and secretion of immunoglobulins. IL6 also cooperates with IL21 to promote differentiation of CD4+ T follicular helper cells (TFH). Elevated serum levels of IL6 correlate with disease flares in patients with systemic lupus erythematosus (SLE). We previously reported that IL21 produced by TFH plays a critical role in the development of the SLE-like disease of BXSB.Yaa mice. To examine the possible contributions of IL6 to disease, we compared disease parameters in IL6-deficient and IL6-competent BXSB.Yaa mice. We report that survival of IL6-deficient BXSB.Yaa mice was significantly prolonged in association with significant reductions in a variety of autoimmune manifestations. Moreover, B cells stimulated by co-engagement of TLR7 and B cell receptor (BCR) produced high levels of IL6 that was further augmented by stimulation with Type I interferon (IFN1). Importantly, the frequencies of TFH and serum levels of IL21 were significantly reduced in IL6-deficient mice. These findings suggest that high-level production of IL6 by B cells induced by integrated signaling from the IFN1 receptor, TLR7 and BCR promotes the differentiation of IL21-secreting TFH in a signaling sequence that drives the lethal autoimmune disease of BXSB.Yaa mice.  相似文献   

16.
Expression of stem cell antigen-1 (Ly-6A/E) is developmentally regulated in murine B cells. However, little is known about its modulation during B cell activation. We report here the differential regulation of Ly-6A/E expression in response to diverse activation signals in mature B cells. Stimulation of resting B cells through the antigen receptor (BCR) inhibited, Ly-6A/E surface expression in dose dependent manner. Activation induced downregulation of Ly-6A/E is specific to BCR mediated signaling events as stimulation of B cells with anti-CD40, lipopolysaccharide or interferon-γ induced upregulation of Ly-6A/E surface expression. The activation induced differential modulation of Ly-6A/E expression is mediated at the mRNA levels. A role for BCR signaling in inhibition of Ly-6A/E expression was further confirmed using STAT-1−/− B cells, which expressed constitutive, but not inducible Ly-6A/E. The BCR induced inhibition of Ly-6A/E RNA and surface expression was mimicked by ionomycin, but not phorbol myristate acetate, indicating a role for calcium but not protein kinase C dependent signaling events. Inhibition of calcineurin reversed the BCR or ionomycin inhibited Ly-6A/E expression. Interestingly, in vitro differentiation analysis of Ly-6A/E+ and Ly-6A/E splenic B cells revealed the Ly-6A/E+ cells to be the major source of antibody production, suggesting a potential role for Ly-6A/E in B cell differentiation. These studies provide the first evidence for activation induced differential modulation and differentiation of Ly-6A/E+ B cells.  相似文献   

17.

Allergic asthma is a chronic inflammatory disease of the lung and the airway, which is characterized by aberrant type 2 immune responses to otherwise unharmful aeroallergens. While the central role of Th2 cells and type 2 cytokines in the pathogenesis of allergic asthma is well documented, the regulation and plasticity of Th2 cells remain incompletely understood. By using an animal model of allergic asthma in IL-4-reporter mice, we found that Th2 cells in the lung expressed higher levels of Rora than those in the lymph nodes, and that treatment with an RORα agonist SR1078 resulted in diminished Th2 cell responses in vivo. To determine the T cell-intrinsic role of RORα in allergic asthma in vivo, we established T cell-specific RORα-deficient (Cd4creRoraf/f) mice. Upon intranasal allergen challenges, Cd4creRoraf/f mice exhibited a significantly increased Th2 cells in the lungs and the airway and showed an enhanced eosinophilic inflammation compared to littermate control mice. Studies with Foxp3YFP-creRoraf/f mice and CD8+ T cell depletion showed that the increased Th2 cell responses in the Cd4creRoraf/f mice were independent of Treg cells and CD8+ T cells. Our findings demonstrate a critical regulatory role of RORα in Th2 cells, which suggest that RORα agonists could be effective for the treatment of allergic diseases.

  相似文献   

18.
19.
The BCR/ABL oncogene causes chronic myelogenous leukemia (CML), a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and granulocyte lineage cells. The SH2-containing inositol-5-phosphatase SHIP is a 145-kDa protein which has been shown to regulate hematopoiesis in mice. Targeted disruption of the murine SHIP gene results in a myeloproliferative syndrome characterized by a dramatic increase in numbers of granulocyte-macrophage progenitor cells in the marrow and spleen. Also, hematopoietic progenitor cells from SHIP(-/-) mice are hyperresponsive to certain hematopoietic growth factors, a phenotype very similar to the effects of BCR/ABL in murine cells. In a series of BCR/ABL-transformed hematopoietic cell lines, Philadelphia chromosome (Ph)-positive cell lines, and primary cells from patients with CML, the expression of SHIP was found to be absent or substantially reduced compared to untransformed cell lines or leukemia cells lacking BCR/ABL. Ba/F3 cells in which expression of BCR/ABL was under the control of a tetracycline-inducible promoter showed rapid loss of p145 SHIP, coincident with induction of BCR/ABL expression. Also, an ABL-specific tyrosine kinase inhibitor, CGP57148B (STI571), rapidly caused reexpression of SHIP, indicating that BCR/ABL directly, but reversibly, regulates the expression of SHIP protein. The estimated half-life of SHIP protein was reduced from 18 h to less than 3 h. However, SHIP mRNA also decreased in response to BCR/ABL, suggesting that SHIP protein levels could be affected by more than one mechanism. Reexpression of SHIP in BCR/ABL-transformed Ba/F3 cells altered the biological behavior of cells in culture. The reduction of SHIP due to BCR/ABL is likely to directly contribute to the pathogenesis of CML.  相似文献   

20.
《Cytotherapy》2014,16(9):1257-1269
Background aimsTo develop a treatment option for Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ALL) resistant to tyrosine kinase inhibitors (TKIs), we evaluated the anti-leukemic activity of T cells non-virally engineered to express a CD19-specific chimeric antigen receptor (CAR).MethodsA CD19.CAR gene was delivered into mononuclear cells from 10 mL of blood of healthy donors through the use of piggyBac-transposons and the 4-D Nucleofector System. Nucleofected cells were stimulated with CD3/CD28 antibodies, magnetically selected for the CD19.CAR, and cultured in interleukin-15–containing serum-free medium with autologous feeder cells for 21 days. To evaluate their cytotoxic potency, we co-cultured CAR T cells with seven Ph+ALL cell lines including three TKI-resistant (T315I-mutated) lines at an effector-to-target ratio of 1:5 or lower without cytokines.ResultsWe obtained ∼1.3 × 108 CAR T cells (CD4+, 25.4%; CD8+, 71.3%), co-expressing CD45RA and CCR7 up to ∼80%. After 7-day co-culture, CAR T cells eradicated all tumor cells at the 1:5 and 1:10 ratios and substantially reduced tumor cell numbers at the 1:50 ratio. Kinetic analysis revealed up to 37-fold proliferation of CAR T cells during a 20-day culture period in the presence of tumor cells. On exposure to tumor cells, CAR T cells transiently and reproducibly upregulated the expression of transgene as well as tumor necrosis factor–related apoptosis-inducing ligand and interleukin-2.ConclusionsWe generated a clinically relevant number of CAR T cells from 10 mL of blood through the use of piggyBac-transposons, a 4D-Nulcleofector, and serum/xeno/tumor cell/virus-free culture system. CAR T cells exhibited marked cytotoxicity against Ph+ALL regardless of T315I mutation. PiggyBac-mediated CD19-specific T-cell therapy may provide an effective, inexpensive and safe option for drug-resistant Ph+ALL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号