首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.  相似文献   

3.
4.
Embryonic stem (ES) cells are characterized by the expression of an extensive and interconnected network of pluripotency factors which are downregulated in specialized cells. Epigenetic mechanisms, including DNA methylation and histone modifications, are also important in maintaining this pluripotency program in ES cells and in guiding correct differentiation of the developing embryo. Methylation of the cytosine base of DNA blocks gene expression in all cell types and further modifications of methylated cytosine have recently been discovered. These new modifications, putative intermediates in a pathway to erase DNA methylation marks, are catalyzed by the ten-eleven translocation (Tet) proteins, specifically by Tet1 and Tet2 in ES cells. Surprisingly, Tet1 shows repressive along with active effects on gene expression depending on its distribution throughout the genome and co-localization with Polycomb Repressive Complex 2 (PRC2). PRC2 di- and tri-methylates lysine 27 of histone 3 (H3K27me2/3 activity), marking genes for repression. In ES cells, almost all gene loci containing the repressive H3K27me3 modification also bear the active H3K4me3 modification, creating “bivalent domains” which mark important developmental regulators for timely activation. Incorporation of Tet1 into the bivalent domain paradigm is a new and exciting development in the epigenetics field, and the ramifications of this novel crosstalk between DNA and histone modifications need to be further investigated. This knowledge would aid reprogramming of specialized cells back into pluripotent stem cells and advance understanding of epigenetic perturbations in cancer.  相似文献   

5.
6.
The JmjC-domain-containing 2-oxoglutarate-dependent oxygenases catalyze protein hydroxylation and Nε-methyllysine demethylation via hydroxylation. A subgroup of this family, the JmjC lysine demethylases (JmjC KDMs) are involved in histone modifications at multiple sites. There are conflicting reports as to the substrate selectivity of some JmjC oxygenases with respect to KDM activities. In this study, a panel of modified histone H3 peptides was tested for demethylation against 15 human JmjC-domain-containing proteins. The results largely confirmed known Nε-methyllysine substrates. However, the purified KDM4 catalytic domains showed greater substrate promiscuity than previously reported (i.e., KDM4A was observed to catalyze demethylation at H3K27 as well as H3K9/K36). Crystallographic analyses revealed that the Nε-methyllysine of an H3K27me3 peptide binds similarly to Nε-methyllysines of H3K9me3/H3K36me3 with KDM4A. A subgroup of JmjC proteins known to catalyze hydroxylation did not display demethylation activity. Overall, the results reveal that the catalytic domains of the KDM4 enzymes may be less selective than previously identified. They also draw a distinction between the Nε-methyllysine demethylation and hydroxylation activities within the JmjC subfamily. These results will be of use to those working on functional studies of the JmjC enzymes.  相似文献   

7.
8.
Ten eleven translocation (Tet) family-mediated DNA oxidation on 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) represents a novel epigenetic modification that regulates dynamic gene expression during embryonic stem cells (ESCs) differentiation. Through the role of Tet on 5hmC regulation in stem cell development is relatively defined, how the Tet family is regulated and impacts on ESCs lineage development remains elusive. In this study, we show non-coding RNA regulation on Tet family may contribute to epigenetic regulation during ESCs differentiation, which is suggested by microRNA-29b (miR-29b) binding sites on the Tet1 3′ untranslated region (3′ UTR). We demonstrate miR-29b increases sharply after embyoid body (EB) formation, which causes Tet1 repression and reduction of cellular 5hmC level during ESCs differentiation. Importantly, we show this miR-29b/Tet1 regulatory axis promotes the mesendoderm lineage formation both in vitro and in vivo by inducing the Nodal signaling pathway and repressing the key target of the active demethylation pathway, Tdg. Taken together, our findings underscore the contribution of small non-coding RNA mediated regulation on DNA demethylation dynamics and the differential expressions of key mesendoderm regulators during ESCs lineage specification. MiR-29b could potentially be applied to enrich production of mesoderm and endoderm derivatives and be further differentiated into desired organ-specific cells.  相似文献   

9.
UTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous XUtx− Y+ mutant male embryos should phenocopy homozygous XUtx− XUtx− females. However, XUtx− Y+ mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X+ YUty− mutant males are viable. In contrast, compound hemizygous XUtx− YUty− males phenocopy homozygous XUtx− XUtx− females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.  相似文献   

10.
In zygotes, a global loss of DNA methylation occurs selectively in the paternal pronucleus before the first cell division, concomitantly with the appearance of modified forms of 5-methylcytosine. The adjacent maternal pronucleus and certain paternally-imprinted loci are protected from this process. Nakamura et al. recently clarified the molecular mechanism involved: PGC7/Stella/Dppa3 binds to dimethylated histone 3 lysine 9 (H3K9me2), thereby blocking the activity of the Tet3 methylcytosine oxidase in the maternal genome as well as at certain imprinted loci in the paternal genome.DNA methylation is a crucial epigenetic modification that regulates imprinting (differential silencing of maternal or paternal alleles) and repression of retrotransposons and other parasitic DNA, as well as possibly X-chromosome inactivation and cellular differentiation. DNA methylation needs to be faithfully maintained throughout the life cycle, since loss of DNA methylation can result in gene dosage problems, dysregulation of gene expression, and genomic instability due to retrotransposon reactivation1. Nevertheless, genome-wide loss of DNA methylation has been observed during germ cell development2 and in the paternal pronucleus soon after fertilization3.For almost a decade, the global decrease of DNA methylation observed in the paternal genome within a few hours of fertilization was ascribed to an “active”, replication-independent process3. The maternal pronucleus is spared and instead undergoes “passive”, replication-dependent demethylation during early embryogenesis, arising from inhibition of the DNA maintenance methyltransferase Dnmt1 (Dnmt1 is normally recruited to newly-replicated DNA because of the high affinity of its obligate partner, UHRF1, for hemi-methylated DNA strands, which are produced from symmetrically-methylated CpG dinucleotides as a result of DNA replication). The basis for active and passive demethylation of the paternal and maternal genomes remained a mystery until proteins of the TET family – TET1, TET2 and TET3 in humans – were discovered to be Fe(II)- and 2-oxoglutarate-dependent enzymes capable of oxidizing 5-methylcytosine (5mC) in DNA4,5,6. TET enzymes serially convert 5mC into 5-hydroxymethyl-cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC)5,7,8.With the generation of specific antibodies to 5hmC, it became clear that the supposed “active demethylation” of the paternal pronucleus in mouse zygote after fertilization was due to the inability of anti-5mC antibodies to recognize 5hmC and other 5mC oxidation products9,10. The enzyme responsible for 5mC oxidation was shown to be Tet3, which unlike Tet1 and Tet2 is highly expressed in mouse oocytes and zygotes. RNAi-mediated depletion of Tet3 decreased the staining of the paternal pronucleus with 5hmC, suggesting that immediately after fertilization, Tet3 in the zygote selectively oxidizes 5mC in the paternal genome to 5hmC9,10.How is the maternal pronucleus protected from Tet3 activity? Nakamura et al.11 previously showed that zygotes lacking PGC7/Stella/Dppa3 lose asymmetric regulation of DNA methylation, instead showing global loss of 5mC staining in both paternal and maternal pronuclei. This was correlated with hypomethylation at several maternally-imprinted loci (Peg1, Peg3, Peg10) in PGC7-deficient zygotes, as judged by bisulfite sequencing. Further, certain paternally-imprinted loci (H19, Rasgrf1), which are normally protected from global loss of methylation in the paternal genome, also became hypomethylated in PGC7-deficient zygotes. These data suggested that PGC7 protects the maternal genome, as well as certain paternally imprinted loci, from loss of 5mC.In their recent publication, Nakamura et al.12 elegantly extended these findings to address the mechanism involved. Based on the fact that a major difference between maternal and paternal genomes is that the maternal genome contains histones, whereas the DNA of the entering sperm is tightly packaged with protamine, they asked whether PGC7 recognizes specific histone marks. Indeed, the maternal genome harbors considerable levels of the histone mark H3K9me211, leading them to examine whether PGC7 distinguishes maternal and paternal genomes by recognizing H3K9me2 in the maternal genome. Using wild-type (WT) ES cells and ES cells deficient in the G9a lysine methyltransferase which generates H3K9me2 mark, they showed that PGC7 associated loosely with nucleosomes and chromatin lacking H3K9me2, but tightly if H3K9me2 was present. The binding was recapitulated using recombinant bacterially-expressed PGC7 and histone tail peptides, indicating a direct interaction of PGC7 with the H3K9me2 mark. In agreement, genomic loci enriched with H3K9me2 recruited PGC7 as judged by chromatin immunoprecipitation (ChIP), but this recruitment was abrogated in G9a-deficient ES cells. These data indicated that PGC7 targets genomic regions occupied by nucleosomes containing H3K9me2 (Figure 1); an interesting extension would be to ask whether loss of maternal G9a also results in 5hmC conversion in the maternal pronucleus in zygotes.Open in a separate windowFigure 1Schematic view of paternal (left) and maternal (right) genomes soon after fertilization. Paternal and maternal pronuclei are indicated with immunostaining results in the boxes. PGC7 binds H3K9me2 in the maternal pronucleus and at certain paternally-imprinted loci (H19, Rasgrf1) in the paternal pronucleus, thereby potentially regulating chromatin organization to interfere with Tet3 accessibility.Next, Nakamura et al.12 tested by immunocytochemistry whether PGC7 in zygotes also required H3K9me2. It is known that H3K9me2 staining is concentrated in the maternal but not the paternal pronucleus13. Using conventional staining methods in which the cells are first fixed and then permeabilized to allow antibodies to enter the cell, the authors observed in their earlier study that PGC7 bound to both pronuclei11. Remarkably, by simply reversing the order of the fixation and permeabilization steps – permeabilizing first to allow the loss of loosely bound proteins by dissociation, then fixing and staining – they found that PGC7 associated much more tightly with the maternal pronucleus that bears H3K9me2 mark. Injection of mRNA encoding Jhdm2a (an H3K9me1/ me2-specific demethylase) into zygotes eliminated staining for H3K9me2 as well as PGC7 in the maternal pronucleus, and concomitantly caused loss of 5mC and acquisition of 5hmC. Taken together, these data strongly suggested that PGC7 was selectively recruited to the maternal pronucleus through binding H3K9me2, and that this binding protected zygotic maternal DNA from oxidation of 5mC to 5hmC and beyond (Figure 1).These findings led Nakamura et al. to investigate how PGC7 controls Tet3 activity in zygotes. They showed (in cells that were permeabilized before fixation and immunocytochemistry) that Tet3 was tightly associated only with the paternal pronucleus in WT zygotes, but was present in both pronuclei in PGC7-deficient zygotes. When PGC7 was prevented from binding to the maternal pronucleus by injection of Jhdm2a mRNA, Tet3 became tightly associated with both pronuclei. In other words, loss of PGC7 or loss of H3K9me2 that recruits PGC7 had the same effect – eliminating selective association of Tet3 with the paternal genome. The implication is that PGC7 – which preferentially binds the maternal genome – somehow promotes the selective binding of Tet3 to the paternal genome, thus permitting rapid 5mC oxidation in paternal but not maternal DNA (Figure 1).PGC7 is a small protein (150 amino acids (aa) in the mouse, 159 aa in humans) whose sequence is only moderately conserved. Nakamura et al.12 showed that the binding of PGC7 to H3K9me2 required the N-terminal half of PGC7, whereas its ability to exclude Tet3 from the maternal pronucleus required the C-terminal half. It is unclear how Tet3 exclusion is mediated. One possibility is that the C-terminal region of PGC7 sterically excludes Tet3 from binding, either to DNA or to a chromatin mark; another is that the C-terminal region of PGC7 is capable of altering chromatin configuration to prevent the binding of Tet3 to chromatin. In support of the latter hypothesis, the rate with which micrococcal nuclease (MNase) digested high-molecular weight chromatin was significantly slower in WT ES cells in which PGC7 was present, compared to PGC7−/− and G9a−/− ES cells in which PGC7 was either absent or not recruited to DNA because of the loss of H3K9me2 mark. In contrast, DNA methylation did not alter the chromatin association of PGC7 or its ability to protect high-molecular weight chromatin from MNase digestion, as shown by using Dnmt1−/−Dnmt3a−/−Dnmt3b−/− triple knockout ES cells that completely lack DNA methylation.How does PGC7 protect paternally-imprinted loci from Tet3-mediated 5mC oxidation? Although the haploid sperm genome is mostly packaged with protamine, a genome-wide analysis revealed that 4% of the genome of mature human sperm bears nucleosomes located at developmental and imprinted genes14. Nakamura et al.12 found that among paternally-imprinted differentially methylated regions (DMRs), the H19 and Rasgrf1 DMRs contained H3K9me2 whereas the Meg3 DMR did not, consistent with their previous finding that in PGC7-deficient zygotes, the H19 and Rasgrf1 DMRs were hypomethylated but the Meg3 DMR was unaffected11. Therefore, PGC7 may be recruited to paternally-imprinted loci through H3K9me2-containing nucleosomes that pre-exist in the sperm haploid genome upon fertilization. Alternatively, Nakamura et al. point out that protamine in the sperm is replaced soon after fertilization by the histone H3.3 variant, which in somatic cells does not bear H3K9me2 mark.In conclusion, Nakamura et al.12 demonstrate unambiguously that PGC7 specifically binds to H3K9me2 in the maternal genome in zygotes, where its global occupancy excludes Tet3 and inhibits Tet3-mediated 5mC oxidation. This novel finding provides new insights into the global alterations of DNA methylation status that occur during early embryogenesis. Follow-up questions abound. First, can PGC7 protect other methylated loci such as transposable elements and the X-chromosome? It would be interesting to assess H3K9me2 at these loci. Second, how does the N-terminal half of PGC7 recognize H3K9me2? Structural characterization of this interaction may elucidate a novel epigenetic “reader” domain specific for H3K9me2. Third, PGC7 is a marker for cells of the inner cell mass, and is co-expressed with Tet1 and Tet2 rather than Tet3 in ESCs15. Does PGC7 also antagonize Tet1 and Tet2 and protect imprinted loci in ESCs? Fourth, how does PGC7 inhibit the access of Tet3 to chromatin? Considering that PGC7 is small and is not equipped with known enzymatic domains, it is likely that PGC-interacting proteins, rather than PGC7 itself, function to regulate chromatin status. Fifth, how is Tet3 recruited to paternal chromatin – are there specific histone or other epigenetic marks that facilitate Tet3 recruitment? Finally, while technically challenging, it seems imperative to identify the target genes of PGC7 and Tet3, by profiling the genomic location of 5hmC and other 5mC oxidation products in the paternal and maternal genomes of zygotes from WT, Tet3-deficient and PGC7-deficient mice.  相似文献   

11.
Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1−/− embryonic stem cells (ESCs) just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1−/− ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites.  相似文献   

12.
13.
14.
15.
Two distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3), respectively. Compared to H3K27me3, localization and the role of H2AK119u1 are not fully understood in ESCs. Here we present genome-wide H2AK119u1 maps in ESCs and identify a group of genes at which H2AK119u1 is deposited in a Ring1-dependent manner. These genes are a distinctive subset of genes with H3K27me3 enrichment and are the central targets of Polycomb silencing that are required to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and thereby ESC maintenance. These data demonstrate that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of genes that are crucial for the maintenance of ESC identity. Utilization of these diverse effector mechanisms might provide a means to maintain a repressive state that is robust yet highly responsive to developmental cues during ES cell self-renewal and differentiation.  相似文献   

16.
17.
18.
Pericentromeric heterochromatin (PCH), the constitutive heterochromatin of pericentromeric regions, plays crucial roles in various cellular events, such as cell division and DNA replication. PCH forms chromocenters in the interphase nucleus, and chromocenters cluster at the prophase of meiosis. Chromocenter clustering has been reported to be critical for the appropriate progression of meiosis. However, the molecular mechanisms underlying chromocenter clustering remain elusive. In this study, we found that global DNA hypomethylation, 5hmC enrichment in PCH, and chromocenter clustering of Dnmt1-KO ESCs were similar to those of the female meiotic germ cells. Tet1 is essential for the deposition of 5hmC and facultative histone marks of H3K27me3 and H2AK119ub at PCH, as well as chromocenter clustering. RING1B, one of the core components of PRC1, is recruited to PCH by TET1, and PRC1 plays a critical role in chromocenter clustering. In addition, the rearrangement of the chromocenter under DNA hypomethylated condition was mediated by liquid-liquid phase separation. Thus, we demonstrated a novel role of Tet1 in chromocenter rearrangement in DNA hypomethylated cells.  相似文献   

19.
Kdm2a catalyzes H3K36me2 demethylation to play an intriguing epigenetic regulatory role in cell proliferation, differentiation, and apoptosis. Herein we found that myeloid-specific knockout of Kdm2a (LysM-Cre-Kdm2af/f, Kdm2a−/−) promoted macrophage M2 program by reprograming metabolic homeostasis through enhancing fatty acid uptake and lipolysis. Kdm2a−/− increased H3K36me2 levels at the Pparg locus along with augmented chromatin accessibility and Stat6 recruitment, which rendered macrophages with preferential M2 polarization. Therefore, the Kdm2a−/− mice were highly protected from high-fat diet (HFD)-induced obesity, insulin resistance, and hepatic steatosis, and featured by the reduced accumulation of adipose tissue macrophages and repressed chronic inflammation following HFD challenge. Particularly, Kdm2a−/− macrophages provided a microenvironment in favor of thermogenesis. Upon HFD or cold challenge, the Kdm2a−/− mice manifested higher capacity for inducing adipose browning and beiging to promote energy expenditure. Collectively, our findings demonstrate the importance of Kdm2a-mediated H3K36 demethylation in orchestrating macrophage polarization, providing novel insight that targeting Kdm2a in macrophages could be a viable therapeutic approach against obesity and insulin resistance.Subject terms: Chronic inflammation, Histone post-translational modifications, Epigenetics, Endocrine system and metabolic diseases  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号