首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The dynamics, hydration, and ion-binding features of two duplexes, the A(r(CG)(12)) and the B(d(CG)(12)), in a neutralizing aqueous environment with 0.25 M added KCl have been investigated by molecular dynamics (MD) simulations. The regular repeats of the same C=G base-pair motif have been exploited as a statistical alternative to long MD simulations in order to extend the sampling of the conformational space. The trajectories demonstrate the larger flexibility of DNA compared to RNA helices. This flexibility results in less well defined hydration patterns around the DNA than around the RNA backbone atoms. Yet, 22 hydration sites are clearly characterized around both nucleic acid structures. With additional results from MD simulations, the following hydration scale for C=G pairs can be deduced: A-DNA相似文献   

2.
The effects of X-ray refinement algorithm on parameters characterising nucleic acid structure are analysed following the re-refinement of the B-dodecamer d(CGCGAATTCGCG). The main conclusions are the following. Mean deviations of main chain torsion angles between the two refinements average 12.6 degrees. Phase angle of pseudorotation for sugar puckers vary between 100 degrees and 180 degrees in the present refinement with amplitude of pucker around 30 degrees. On the other hand, the helical parameters have mean deviations less than 2 degrees. At most half of the assigned solvent positions are within 2 A in both refinements. In the second part of the work, plots of temperature factors (B's) versus occupancies (Q's) for solvent peaks have been analysed in the B-dodecamer and in the Z-hexamer d(5BrCG5BrCG5BrCG). Owing to the poor statistics, some of those conclusions should be regarded as tentative. Occupancy appears to depend on the number of contacts made by the solvent peak with the nucleic acid while temperature factor does not. Except when engaged in particular interaction sites, solvent molecules bound to phosphates have a tendency for high B's and variable Q's. Water molecules bound to polar atoms of the bases occupy various positions in the B-Q diagram. Particularly striking is the behavior of the water molecules belonging to the B-spine and to the Z-spine: the spread in occupancy of water molecules in the hydration spine of the Z-oligomer is larger than in the hydration spine of the B-oligomer. An opposite tendency is observed for the temperature factors. The first observation might reflect the special mobility of the water molecules building up the spine hydration in the Z-form where it continues without interruption from one hexamer to the next. In the B-form, on the contrary, the spine is restricted to the center part of the dodecamer. The second observation might reflect the sharpness of the local attractive potential in the Z-form and its broadness in the B-form. In both cases, dipole reorientations would occur, leading to a high local dielectric constant: in the Z-form, through water molecules hopping from one site to another and, in the B-form, because of rotational freedom.  相似文献   

3.
Ordered water structure in an A-DNA octamer at 1.7 A resolution   总被引:5,自引:0,他引:5  
The crystal structure of the deoxyoctamer d(G-G-Br U-A-BrU-A-C-C) was refined to a resolution of 1.7 A using combined diffractometer and synchrotron data. The analysis was carried out independently in two laboratories using different procedures. Although the final results are identical the comparison of the two approaches highlights potential problems in the refinement of oligonucleotides when only limited data are available. As part of the analysis the positions of 84 solvent molecules in the asymmetric unit were established. The DNA molecule is highly solvated, particularly the phosphate-sugar back-bone and the functional groups of the bases. The major groove contains, in the central BrU-A-BrU-A region, a ribbon of water molecules forming closed pentagons with shared edges. These water molecules are linked to the base O and N atoms and to the solvent chains connecting the O-1 phosphate oxygen atoms on each strand. The minor groove is also extensively hydrated with a continuous network in the central region and other networks at each end. The pattern of hydration is briefly compared with that observed in the structure of a B-dodecamer.  相似文献   

4.
New simple atom-atom potential functions for simulating behavior of nucleic acids and their fragments in aqueous solutions are suggested. These functions contains terms which are inversely proportional to the first (electrostatics), sixth (or tenth for the atoms, forming hydrogen bonds) and twelfth (repulsion of all the atoms) powers of interatomic distance. For the refinement of the potential function parameters calculations of ice lattice energy, potential energy and configuration of small clusters consisting of water and nucleic acid base molecules as well as Monte Carlo simulation of liquid water were performed. Calculations using new potential functions give rise to more linear hydrogen bonds between water and base molecules than using other potentials. Sites of preferential hydration of five nucleic bases - uracil, thymine, cytosine, guanine and adenine as well as of 6,6,9-trimethyladenine were found. In the most energetically favourable sites water molecular interacts with two adjacent hydrophilic centres of the base. Studies of interaction of the bases with several water molecules showed that water-water interactions play an important role in the arrangement of the nearest to the base water molecules. Hydrophilic centres are connected by "bridges" formed by hydrogen bonded water molecules. The results obtained are consistent with crystallographic and mass-spectrometric data.  相似文献   

5.
Abstract

New simple atom-atom potential functions for simulating behavior of nucleic acids and their fragments in aqueous solutions are suggested. These functions contain terms which are inversely proportional to the first (electrostatics), sixth (or tenth for the atoms, forming hydrogen bonds) and twelfth (repulsion of all the atoms) powers of interatomic distance. For the refinement of the potential function parameters calculations of ice lattice energy, potential energy and configuration of small clusters consisting of water and nucleic acid base molecules as well as Monte Carlo simulation of liquid water were performed. Calculations using new potential functions give rise to more linear hydrogen bonds between water and base molecules than using other potentials. Sites of preferential hydration of five nucleic bases—uracil, thymine, cytosine, guanine and adenine as well as of 6,6,9-trimethyladenine were found. In the most energetically favourable sites water molecule interacts with two adjacent hydrophilic centres of the base. Studies of interaction of the bases with several water molecules showed that water-water interaction play an important role in the arrangement of the nearest to the base water molecules. Hydrophilic centres are connected by “bridges” formed by hydrogen bonded water molecules. The results obtained are consistent with crystallographic and mass-spectrometric data.  相似文献   

6.
We have analysed the hydration of main-chain carbonyl and amide groups in 24 high-resolution well-refined protein structures as a function of the secondary structure in which these polar groups occur. We find that main-chain atoms in beta-sheets are as hydrated as those in alpha-helices, with most interactions involving "free" amide and carbonyl groups that do not participate in secondary structure hydrogen bonds. The distributions of water molecules around these non-bonded carbonyl groups reflect specific steric interactions due to the local secondary structure. Approximately 20% and 4%, respectively of bonded carbonyl and amide groups interact with solvent. These include interactions with carbonyl groups on the exposed faces of alpha-helices that have been correlated previously with bending of the helix. Water molecules interacting with alpha-helices occur mainly at the amino and carbonyl termini of the helices, in which case the solvent sites maintain the hydrogen bonding by bridging between residues i and i-3 or i-4 at the amino terminus and between i and i+3 or i+4 at the carbonyl terminus. We also see a number of solvent-mediated Ncap and Ccap interactions. The water molecules interacting with beta-sheets occur mainly at the edges, in which case they extend the sheet structure, or at the ends of strands, in which case they extend the beta-ladder. In summary, the solvent networks appear to extend the hydrogen-bonding structure of the secondary structures. In beta-turns, which usually occur at the surface of a protein, exposed amide and carbonyl groups are often hydrated, especially close to glycine residues. Occasionally water molecules form a bridge between residues i and i+3 in the turn and this may provide extra stabilization.  相似文献   

7.
Hydration of transfer RNA molecules: a crystallographic study   总被引:3,自引:0,他引:3  
E Westhof  P Dumas  D Moras 《Biochimie》1988,70(2):145-165
Four crystal structures of transfer RNA molecules were refined at 3 A resolution with the inclusion of the solvent molecules found in the difference maps: yeast tRNA-phe in the orthorhombic form, yeast tRNA-phe in the monoclinic form and yeast tRNA-asp in the A and B forms. Over 100 solvent molecules were located in each tRNA crystal. Several hydration schemes are found repeatedly in the 4 crystals. The tertiary interactions in the corner of the L-shaped molecule attract numerous solvent molecules which bridge the ribose hydroxyl O(2') atoms, base exocyclic atoms and phosphate anionic oxygen atoms. Conservation of bases leads to conservative localized hydration patterns. Several solvent molecules are found stabilizing unusual base pairs like the G-U pairs and those involving the pseudouridine base. Water bridges between the O(2') and the exocyclic atom O2 of pyrimidines or the N3 atom of purines are common. Water bridges occur frequently between successive anionic oxygen atoms of each strand as well as between N7 or other exocyclic atoms of successive bases in the major groove. Magnesium ions or spermine molecules are found to bind in the major groove of tRNA helices without specific interactions.  相似文献   

8.
The crystal structure of the double-helical B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G has been solved and refined independently in three forms: (1) the parent sequence at room temperature; (2) the same sequence at 16 K; and (3) the 9-bromo variant C-G-C-G-A-A-T-TBrC-G-C-G at 7 °C in 60% (v/v) 2-methyl-2.4-pentanediol. The latter two structures show extensive hydration along the phosphate backbone, a feature that was invisible in the native structure because of high temperature factors (indicating thermal or static disorder) of the backbone atoms. Sixty-five solvent peaks are associated with the phosphate backbone, or an average of three per phosphate group. Nineteen other molecules form a first shell of hydration to base edge N and O atoms within the major groove, and 36 more are found in upper hydration layers. The latter tend to occur in strings or clusters spanning the major groove from one phosphate group to another. A single spermine molecule also spans the major groove. In the minor groove, the zig-zag spine of hydration that we believe to be principally responsible for stabilizing the B form of DNA is found in all three structures. Upper level hydration in the minor groove is relatively sparse, and consists mainly of strings of water molecules extending across the groove, with few contacts to the spine below. Sugar O-1′ atoms are closely associated with water molecules, but these are chiefly molecules in the spine, so the association may reflect the geometry of the minor groove rather than any intrinsic attraction of O-1′ atoms for hydration. The phosphate O-3′ and O-5′ atoms within the backbone chain are least hydrated of all, although no physical or steric impediment seems to exist that would deny access to these oxygen atoms by water molecules.  相似文献   

9.
A new method to analyze the distribution of water molecules around the bases in DNA is presented. This method relies on the notion of a "hydrated building block," which represents the joint observed hydration around all bases of a particular type, in structures of a particular conformation type. The hydrated building blocks were constructed using atomic coordinates from 40 structures contained in the Nucleic Acid Database. Pseudoelectron densities were calculated for water molecules in each hydrated building block using standard crystallographic procedures. The electron densities were fitted to obtain "average building blocks," which represent bases with waters only at average or probable positions. Both types of building blocks were used to construct models of hydrated DNA oligomers. The essential features of the solvent structure around d(CGCGAATTCGCG)2 in the B form and d(CGCGCG)2 in the Z form were reproduced.  相似文献   

10.
Hydration of DNA bases: analysis of crystallographic data.   总被引:7,自引:0,他引:7  
We present a systematic analysis of water structure around nucleic acid bases. We have examined 28 crystal structures of oligonucleotides, and have studied the patterns of water around the four bases, guanine, cytosine, adenine, and thymine. The geometries of water positions were calculated up to 4.00 A from base atoms. We have found conformation-dependent differences in both the geometry and extent of hydration of the bases.  相似文献   

11.
Abstract

The crystal structure of the deoxyoctamer d(G-G-Br U-A-BrU-A-C-C) was refined to a resolution of 1.7Å using combined diffractometer and synchrotron data. The analysis was carried out independently in two laboratories using different procedures. Although the final results are identical the comparison of the two approaches highlights potential problems in the refinement of oligonucleotides when only limited data are available.

As part of the analysis the positions of 84 solvent molecules in the asymmetric unit were established. The DNA molecule is highly solvated, particularly the phosphate-sugar backbone and the functional groups of the bases. The major groove contains, in the central BrU-A-BrU-A region, a ribbon of water molecules forming closed pentagons with shared edges. These water molecules are linked to the base O and N atoms and to the solvent chains connecting the O-1 phosphate oxygen atoms on each strand. The minor groove is also extensively hydrated with a continuous network in the central region and other networks at each end. The pattern of hydration is briefly compared with that observed in the crystal structure of a B-dodecamer.  相似文献   

12.
Hydration and recognition of methylated CpG steps in DNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
C Mayer-Jung  D Moras    Y Timsit 《The EMBO journal》1998,17(9):2709-2718
The analysis of the hydration pattern around methylated CpG steps in three high resolution (1.7, 2.15 and 2.2 A) crystal structures of A-DNA decamers reveals that the methyl groups of cytosine residues are well hydrated. In comparing the native structure with two structurally distinct forms of the decamer d(CCGCCGGCGG) fully methylated at its CpG steps, this study shows also that in certain structural and sequence contexts, the methylated cytosine base can be more hydrated that the unmodified one. These water molecules seem to be stabilized in front of the methyl group through the formation C-H...O interactions. In addition, these structures provide the first observation of magnesium cations bound to the major groove of A-DNA and reveal two distinct modes of metal binding in methylated and native duplexes. These findings suggest that methylated cytosine bases could be recognized by protein or DNA polar residues through their tightly bound water molecules.  相似文献   

13.
The solvent structure in orthorhombic crystals of bovine trypsin has been independently determined by X-ray diffraction to 1.35 A resolution and by neutron diffraction to 2.1 A resolution. A consensus model of the water molecule positions was obtained using oxygen positions identified in the electron density map determined by X-ray diffraction, which were verified by comparison to D2O-H2O difference neutron scattering density. Six of 184 water molecules in the X-ray structure, all with B-factors greater than 50 A2, were found to be spurious after comparison with neutron results. Roughly two-thirds of the water of hydration expected from thermodynamic data for proteins was localized by neutron diffraction; approximately one-half of the water of hydration was located by X-ray diffraction. Polar regions of the protein are well hydrated, and significant D2O-H2O difference density is seen for a small number of water molecules in a second shell of hydration. Hydrogen bond lengths and angles calculated from unconstrained refinement of water positions are distributed about values typically seen in small molecule structures. Solvent models found in seven other bovine trypsin and trypsinogen and rat trypsin structures determined by X-ray diffraction were compared. Internal water molecules are well conserved in all trypsin structures including anionic rat trypsin, which is 65% homologous to bovine trypsin. Of the 22 conserved waters in trypsin, 19 were also found in trypsinogen, suggesting that they are located in regions of the apoprotein that are structurally conserved in the transition to the mature protein. Seven waters were displaced upon activation of trypsinogen. Water structure at crystal contacts is not generally conserved in different crystal forms. Three groups of integral structural water molecules are highly conserved in all solvent structures, including a spline of water molecules inserted between two beta-strands, which may resemble an intermediate in the formation of beta sheets during the folding of a protein.  相似文献   

14.
15.
The tertiary structure of nucleic acids results from an equilibrium between electrostatic interactions of phosphates, stacking interactions of bases, hydrogen bonds between polar atoms and water molecules. Water interactions with ribonucleic acid play a key role in its structure formation, stabilization and dynamics. We used high hydrostatic pressure and osmotic pressure to analyze changes in RNA hydration. We analyzed the lead catalyzed hydrolysis of tRNAPhe from S. cerevisiae as well as hydrolytic activity of leadzyme. Pb(II) induced hydrolysis of the single phosphodiester bond in tRNAPhe is accompanied by release of 98 water molecules, while other molecule, leadzyme releases 86.  相似文献   

16.
Abstract

Hydration properties of individual nucleic acid bases were calculated and compared with the available experimental data. Three sets of classical potential functions (PF) used in simulations of nucleic acid hydration were juxtaposed: (i) the PF developed by Poltev and Malenkov (PM), (ii) the PF of Weiner and Kollman (WK), which together with Jorgensen's TIP3P water model are widely used in the AMBER program, and (HI) OPLS (optimized potentials for liquid simulations) developed by Jorgensen (J). The global minima of interaction energy of single water molecules with all the natural nucleic acid bases correspond to the formation of two water-base hydrogen bonds (water bridging of two hydrophilic atoms of the base). The energy values of these minima calculated via PM potentials are in somewhat better conformity with mass-spectrometric data than the values calculated via WK PF. OPLS gave much weaker water-base interactions for all compounds considered, thus these PF were not used in further computations. Monte Carlo simulations of the hydration of 9- methyladenine, 1-methyluracil and 1-methylthymine were performed in systems with 400 water molecules and periodic boundary conditions. Results of simulations with PM potentials give better agreement with experimental data on hydration energies than WK PF. Computations with PM PF of the hydration energy of keto and enol tautomers of 9-methyl- guanine can account for the shift in the tautomeric equilibrium of guanine in aqueous media to a dominance of the keto form in spite of nearly equal intrinsic stability of keto and enol tautomers. The results of guanine hydration computations are discussed in relation to mechanisms of base mispairing errors in nucleic acid biosynthesis. The data presented in this paper along with previous results on simulation of hydration shell structures in DNA duplex grooves provide ample evidence for the advantages of PM PF in studies of nucleic-acid hydration.  相似文献   

17.
The influence of hydration on the nanosecond timescale dynamics of tRNA is investigated using neutron scattering spectroscopy. Unlike protein dynamics, the dynamics of tRNA is not affected by methyl group rotation. This allows for a simpler analysis of the influence of hydration on the conformational motions in RNA. We find that hydration affects the dynamics of tRNA significantly more than that of lysozyme. Both the characteristic length scale and the timescale of the conformational motions in tRNA depend strongly on hydration. Even the characteristic temperature of the so-called “dynamical transition” appears to be hydration-dependent in tRNA. The amplitude of the conformational motions in fully hydrated tRNA is almost twice as large as in hydrated lysozyme. We ascribe these differences to a more open and flexible structure of hydrated RNA, and to a larger fraction and different nature of hydrophilic sites. The latter leads to a higher density of water that makes the biomolecule more flexible. All-atom molecular-dynamics simulations are used to show that the extent of hydration is greater in tRNA than in lysozyme. We propose that water acts as a “lubricant” in facilitating enhanced motion in solvated RNA molecules.  相似文献   

18.
Madan B  Sharp KA 《Biophysical journal》2001,81(4):1881-1887
The heat capacities of hydration (dCp) of the five nucleic acid bases A, G, C, T, and U, the sugars ribose and deoxyribose, and the phosphate backbone were determined using Monte Carlo simulations and the random network model. Solute-induced changes in the mean length and root mean square angle of hydrogen bonds between hydration shell waters were used to compute dCp for these solutes. For all solutes the dCp is significantly more positive than predicted from accessible surface area (ASA) models of heat capacity. In ASA models, nitrogen, oxygen, and phosphorus atoms are considered as uniformly polar, therefore making a negative contribution to dCp. However, the simulations show that many of these polar atoms are hydrated by water whose hydrogen bonds are less distorted than in bulk, leading to a positive dCp. This is in contrast to the effect of polar groups seen previously in small molecules and amino acids, which increase the water H-bond distortion, giving negative dCp contributions. Our results imply that dCp accompanying DNA dehydration in DNA-ligand and DNA-protein binding reactions may be significantly more negative than previously believed and that dehydration is a significant contributor to the large decrease in heat capacity seen in experiments.  相似文献   

19.
Distributions of water around amino acid residues in proteins   总被引:11,自引:0,他引:11  
The atomic co-ordinates from 16 high-resolution (less than or equal to 1.7 A = 0.1 nm), non-homologous proteins have been used to study the distributions of water molecule sites around the 20 different amino acid residues. The proportion of residues whose main-chain atoms are in contact with water molecules was fairly constant (between 40% and 60%), irrespective of the nature of the side-chain. However, the proportion of residues whose side-chain atoms were in contact with water molecules showed a clear (inverse) correlation with the hydrophobicity of the residue, being as low as 14% for leucine and isoleucine but greater than 80% for asparagine and arginine. Despite the problems in determining accurate water molecule sites from X-ray diffraction data and the complexity of the protein surface, distinct non-random distributions of water molecules were found. These hydration patterns are consistent with the expected stereochemistry of the potential hydrogen-bonding sites on the polar side-chains. The water molecules around apolar side-chains lie predominantly at van der Waals' contact distances, but most of these have a primary, shorter contact with a neighbouring polar atom. Further analysis of these distributions, combined with energy minimization techniques, should lead to improved modelling of protein structures, including their primary shells of hydration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号