首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid advances in sequencing technologies set the stage for the large-scale medical sequencing efforts to be performed in the near future, with the goal of assessing the importance of rare variants in complex diseases. The discovery of new disease susceptibility genes requires powerful statistical methods for rare variant analysis. The low frequency and the expected large number of such variants pose great difficulties for the analysis of these data. We propose here a robust and powerful testing strategy to study the role rare variants may play in affecting susceptibility to complex traits. The strategy is based on assessing whether rare variants in a genetic region collectively occur at significantly higher frequencies in cases compared with controls (or vice versa). A main feature of the proposed methodology is that, although it is an overall test assessing a possibly large number of rare variants simultaneously, the disease variants can be both protective and risk variants, with moderate decreases in statistical power when both types of variants are present. Using simulations, we show that this approach can be powerful under complex and general disease models, as well as in larger genetic regions where the proportion of disease susceptibility variants may be small. Comparisons with previously published tests on simulated data show that the proposed approach can have better power than the existing methods. An application to a recently published study on Type-1 Diabetes finds rare variants in gene IFIH1 to be protective against Type-1 Diabetes.  相似文献   

2.
Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with complex diseases. Despite remarkable success in uncovering many risk variants and providing novel insights into disease biology, genetic variants identified to date fail to explain the vast majority of the heritability for most complex diseases. One explanation is that there are still a large number of common variants that remain to be discovered, but their effect sizes are generally too small to be detected individually. Accordingly, gene set analysis of GWAS, which examines a group of functionally related genes, has been proposed as a complementary approach to single-marker analysis. Here, we propose a flexible and adaptive test for gene sets (FLAGS), using summary statistics. Extensive simulations showed that this method has an appropriate type I error rate and outperforms existing methods with increased power. As a proof of principle, through real data analyses of Crohn’s disease GWAS data and bipolar disorder GWAS meta-analysis results, we demonstrated the superior performance of FLAGS over several state-of-the-art association tests for gene sets. Our method allows for the more powerful application of gene set analysis to complex diseases, which will have broad use given that GWAS summary results are increasingly publicly available.  相似文献   

3.
Li H 《Human genetics》2012,131(9):1395-1401
Many common human diseases are complex and are expected to be highly heterogeneous, with multiple causative loci and multiple rare and common variants at some of the causative loci contributing to the risk of these diseases. Data from the genome-wide association studies (GWAS) and metadata such as known gene functions and pathways provide the possibility of identifying genetic variants, genes and pathways that are associated with complex phenotypes. Single-marker-based tests have been very successful in identifying thousands of genetic variants for hundreds of complex phenotypes. However, these variants only explain very small percentages of the heritabilities. To account for the locus- and allelic-heterogeneity, gene-based and pathway-based tests can be very useful in the next stage of the analysis of GWAS data. U-statistics, which summarize the genomic similarity between pair of individuals and link the genomic similarity to phenotype similarity, have proved to be very useful for testing the associations between a set of single nucleotide polymorphisms and the phenotypes. Compared to single marker analysis, the advantages afforded by the U-statistics-based methods is large when the number of markers involved is large. We review several formulations of U-statistics in genetic association studies and point out the links of these statistics with other similarity-based tests of genetic association. Finally, potential application of U-statistics in analysis of the next-generation sequencing data and rare variants association studies are discussed.  相似文献   

4.
Liu DJ  Leal SM 《PLoS genetics》2010,6(10):e1001156
There is solid evidence that rare variants contribute to complex disease etiology. Next-generation sequencing technologies make it possible to uncover rare variants within candidate genes, exomes, and genomes. Working in a novel framework, the kernel-based adaptive cluster (KBAC) was developed to perform powerful gene/locus based rare variant association testing. The KBAC combines variant classification and association testing in a coherent framework. Covariates can also be incorporated in the analysis to control for potential confounders including age, sex, and population substructure. To evaluate the power of KBAC: 1) variant data was simulated using rigorous population genetic models for both Europeans and Africans, with parameters estimated from sequence data, and 2) phenotypes were generated using models motivated by complex diseases including breast cancer and Hirschsprung's disease. It is demonstrated that the KBAC has superior power compared to other rare variant analysis methods, such as the combined multivariate and collapsing and weight sum statistic. In the presence of variant misclassification and gene interaction, association testing using KBAC is particularly advantageous. The KBAC method was also applied to test for associations, using sequence data from the Dallas Heart Study, between energy metabolism traits and rare variants in ANGPTL 3,4,5 and 6 genes. A number of novel associations were identified, including the associations of high density lipoprotein and very low density lipoprotein with ANGPTL4. The KBAC method is implemented in a user-friendly R package.  相似文献   

5.
Although whole-genome association studies using tagSNPs are a powerful approach for detecting common variants, they are underpowered for detecting associations with rare variants. Recent studies have demonstrated that common diseases can be due to functional variants with a wide spectrum of allele frequencies, ranging from rare to common. An effective way to identify rare variants is through direct sequencing. The development of cost-effective sequencing technologies enables association studies to use sequence data from candidate genes and, in the future, from the entire genome. Although methods used for analysis of common variants are applicable to sequence data, their performance might not be optimal. In this study, it is shown that the collapsing method, which involves collapsing genotypes across variants and applying a univariate test, is powerful for analyzing rare variants, whereas multivariate analysis is robust against inclusion of noncausal variants. Both methods are superior to analyzing each variant individually with univariate tests. In order to unify the advantages of both collapsing and multiple-marker tests, we developed the Combined Multivariate and Collapsing (CMC) method and demonstrated that the CMC method is both powerful and robust. The CMC method can be applied to either candidate-gene or whole-genome sequence data.  相似文献   

6.
It has been hypothesized that, in aggregate, rare variants in coding regions of genes explain a substantial fraction of the heritability of common diseases. We sequenced the exomes of 1,000 Danish cases with common forms of type 2 diabetes (including body mass index > 27.5 kg/m2 and hypertension) and 1,000 healthy controls to an average depth of 56×. Our simulations suggest that our study had the statistical power to detect at least one causal gene (a gene containing causal mutations) if the heritability of these common diseases was explained by rare variants in the coding regions of a limited number of genes. We applied a series of gene-based tests to detect such susceptibility genes. However, no gene showed a significant association with disease risk after we corrected for the number of genes analyzed. Thus, we could reject a model for the genetic architecture of type 2 diabetes where rare nonsynonymous variants clustered in a modest number of genes (fewer than 20) are responsible for the majority of disease risk.  相似文献   

7.
Alzheimer's disease (AD) is a common and complex neurodegenerative disease. Age at onset (AAO) of AD is an important component phenotype with a genetic basis, and identification of genes in which variation affects AAO would contribute to identification of factors that affect timing of onset. Increase in AAO through prevention or therapeutic measures would have enormous benefits by delaying AD and its associated morbidities. In this paper, we performed a family‐based genome‐wide association study for AAO of late‐onset AD in whole exome sequence data generated in multigenerational families with multiple AD cases. We conducted single marker and gene‐based burden tests for common and rare variants, respectively. We combined association analyses with variance component linkage analysis, and with reference to prior studies, in order to enhance evidence of the identified genes. For variants and genes implicated by the association study, we performed a gene‐set enrichment analysis to identify potential novel pathways associated with AAO of AD. We found statistically significant association with AAO for three genes (WRN, NTN4 and LAMC3) with common associated variants, and for four genes (SLC8A3, SLC19A3, MADD and LRRK2) with multiple rare‐associated variants that have a plausible biological function related to AD. The genes we have identified are in pathways that are strong candidates for involvement in the development of AD pathology and may lead to a better understanding of AD pathogenesis.  相似文献   

8.
The rapid decrease in sequencing cost has enabled genetic studies to discover rare variants associated with complex diseases and traits. Once this association is identified, the next step is to understand the genetic mechanism of rare variants on how the variants influence diseases. Similar to the hypothesis of common variants, rare variants may affect diseases by regulating gene expression, and recently, several studies have identified the effects of rare variants on gene expression using heritability and expression outlier analyses. However, identifying individual genes whose expression is regulated by rare variants has been challenging due to the relatively small sample size of expression quantitative trait loci studies and statistical approaches not optimized to detect the effects of rare variants. In this study, we analyze whole-genome sequencing and RNA-seq data of 681 European individuals collected for the Genotype-Tissue Expression (GTEx) project (v8) to identify individual genes in 49 human tissues whose expression is regulated by rare variants. To improve statistical power, we develop an approach based on a likelihood ratio test that combines effects of multiple rare variants in a nonlinear manner and has higher power than previous approaches. Using GTEx data, we identify many genes regulated by rare variants, and some of them are only regulated by rare variants and not by common variants. We also find that genes regulated by rare variants are enriched for expression outliers and disease-causing genes. These results suggest the regulatory effects of rare variants, which would be important in interpreting associations of rare variants with complex traits.  相似文献   

9.
Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying “causal” rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.  相似文献   

10.
Although they have demonstrated success in searching for common variants for complex diseases, genome-wide association (GWA) studies are less successful in detecting rare genetic variants because of the poor statistical power of most of current methods. We developed a two-stage method that can apply to GWA studies for detecting rare variants. Here we report the results of applying this two-stage method to the Wellcome Trust Case Control Consortium (WTCCC) dataset that include seven complex diseases: bipolar disorder, cardiovascular disease, hypertension (HT), rheumatoid arthritis, Crohn’s disease, type 1 diabetes and type 2 diabetes (T2D). We identified 24 genes or regions that reach genome wide significance. Eight of them are novel and were not reported in the WTCCC study. The cumulative risk (or protective) haplotype frequency for each of the 8 genes or regions is small, being at most 11%. For each of the novel genes, the risk (or protective) haplotype set cannot be tagged by the common SNPs available in chips (r 2 < 0.32). The gene identified in HT was further replicated in the Framingham Heart Study, and is also significantly associated with T2D. Our analysis suggests that searching for rare genetic variants is feasible in current GWA studies and candidate gene studies, and the results can severe as guides to future resequencing studies to identify the underlying rare functional variants.  相似文献   

11.
Most genetic variants associated with complex diseases in humans are believed to have a small impact on risk. With traditional candidate gene/pathway approaches several associations with disease risk could be identified. However, now that genome-wide association studies are feasible, the question arises if there is still a need for these approaches. By using HapMap data, we evaluated to which extent commercially available microarrays cover, through linkage disequilibrium, all currently known genes and biological processes in different populations. Furthermore, we estimated the power to detect an association with any specific SNP. Our study shows that coverage of individual genes and pathways by current commercial genotyping platforms is satisfactory for the vast majority of RefSeq gene regions. However, depending on the gene or the population, there may still be a need for candidate gene approaches, especially when looking at polymorphisms with low allele frequencies.  相似文献   

12.
Sequencing and exome-chip technologies have motivated development of novel statistical tests to identify rare genetic variation that influences complex diseases. Although many rare-variant association tests exist for case-control or cross-sectional studies, far fewer methods exist for testing association in families. This is unfortunate, because cosegregation of rare variation and disease status in families can amplify association signals for rare variants. Many researchers have begun sequencing (or genotyping via exome chips) familial samples that were either recently collected or previously collected for linkage studies. Because many linkage studies of complex diseases sampled affected sibships, we propose a strategy for association testing of rare variants for use in this study design. The logic behind our approach is that rare susceptibility variants should be found more often on regions shared identical by descent by affected sibling pairs than on regions not shared identical by descent. We propose both burden and variance-component tests of rare variation that are applicable to affected sibships of arbitrary size and that do not require genotype information from unaffected siblings or independent controls. Our approaches are robust to population stratification and produce analytic p values, thereby enabling our approach to scale easily to genome-wide studies of rare variation. We illustrate our methods by using simulated data and exome chip data from sibships ascertained for hypertension collected as part of the Genetic Epidemiology Network of Arteriopathy (GENOA) study.  相似文献   

13.
Finding genes for complex diseases has been the goal of many genetic studies. Most of these studies have been successful by searching for genes and mutations in rare familial cases, by screening candidate genes and by performing genome wide association studies. However, only a small fraction of the total genetic risk for these complex genetic diseases can be explained by the identified mutations and associated genetic loci. In this review we focus on Hirschsprung disease (HSCR) as an example of a complex genetic disorder. We describe the genes identified in this congenital malformation and postulate that both common ‘low penetrant’ variants in combination with rare or private ‘high penetrant’ variants determine the risk on HSCR, and likely, on other complex diseases. We also discuss how new technological advances can be used to gain further insights in the genetic background of complex diseases. Finally, we outline a few steps to develop functional assays in order to determine the involvement of these variants in disease development.  相似文献   

14.
There is strong evidence that rare variants are involved in complex disease etiology. The first step in implicating rare variants in disease etiology is their identification through sequencing in both randomly ascertained samples (e.g., the 1,000 Genomes Project) and samples ascertained according to disease status. We investigated to what extent rare variants will be observed across the genome and in candidate genes in randomly ascertained samples, the magnitude of variant enrichment in diseased individuals, and biases that can occur due to how variants are discovered. Although sequencing cases can enrich for casual variants, when a gene or genes are not involved in disease etiology, limiting variant discovery to cases can lead to association studies with dramatically inflated false positive rates.  相似文献   

15.
In the past few years, case-control studies of common diseases have shifted their focus from single genes to whole exomes. New sequencing technologies now routinely detect hundreds of thousands of sequence variants in a single study, many of which are rare or even novel. The limitation of classical single-marker association analysis for rare variants has been a challenge in such studies. A new generation of statistical methods for case-control association studies has been developed to meet this challenge. A common approach to association analysis of rare variants is the burden-style collapsing methods to combine rare variant data within individuals across or within genes. Here, we propose a new hybrid likelihood model that combines a burden test with a test of the position distribution of variants. In extensive simulations and on empirical data from the Dallas Heart Study, the new model demonstrates consistently good power, in particular when applied to a gene set (e.g., multiple candidate genes with shared biological function or pathway), when rare variants cluster in key functional regions of a gene, and when protective variants are present. When applied to data from an ongoing sequencing study of bipolar disorder (191 cases, 107 controls), the model identifies seven gene sets with nominal p-values0.05, of which one MAPK signaling pathway (KEGG) reaches trend-level significance after correcting for multiple testing.  相似文献   

16.
The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.  相似文献   

17.
18.
With development of massively parallel sequencing technologies, there is a substantial need for developing powerful rare variant association tests. Common approaches include burden and non-burden tests. Burden tests assume all rare variants in the target region have effects on the phenotype in the same direction and of similar magnitude. The recently proposed sequence kernel association test (SKAT) (Wu, M. C., and others, 2011. Rare-variant association testing for sequencing data with the SKAT. The American Journal of Human Genetics 89, 82-93], an extension of the C-alpha test (Neale, B. M., and others, 2011. Testing for an unusual distribution of rare variants. PLoS Genetics 7, 161-165], provides a robust test that is particularly powerful in the presence of protective and deleterious variants and null variants, but is less powerful than burden tests when a large number of variants in a region are causal and in the same direction. As the underlying biological mechanisms are unknown in practice and vary from one gene to another across the genome, it is of substantial practical interest to develop a test that is optimal for both scenarios. In this paper, we propose a class of tests that include burden tests and SKAT as special cases, and derive an optimal test within this class that maximizes power. We show that this optimal test outperforms burden tests and SKAT in a wide range of scenarios. The results are illustrated using simulation studies and triglyceride data from the Dallas Heart Study. In addition, we have derived sample size/power calculation formula for SKAT with a new family of kernels to facilitate designing new sequence association studies.  相似文献   

19.
Next-generation sequencing data will soon become routinely available for association studies between complex traits and rare variants. Sequencing data, however, are characterized by the presence of sequencing errors at each individual genotype. This makes it especially challenging to perform association studies of rare variants, which, due to their low minor allele frequencies, can be easily perturbed by genotype errors. In this article, we develop the quality-weighted multivariate score association test (qMSAT), a new procedure that allows powerful association tests between complex traits and multiple rare variants under the presence of sequencing errors. Simulation results based on quality scores from real data show that the qMSAT often dominates over current methods, that do not utilize quality information. In particular, the qMSAT can dramatically increase power over existing methods under moderate sample sizes and relatively low coverage. Moreover, in an obesity data study, we identified using the qMSAT two functional regions (MGLL promoter and MGLL 3'-untranslated region) where rare variants are associated with extreme obesity. Due to the high cost of sequencing data, the qMSAT is especially valuable for large-scale studies involving rare variants, as it can potentially increase power without additional experimental cost. qMSAT is freely available at http://qmsat.sourceforge.net/.  相似文献   

20.
While progress has been made in identifying common genetic variants associated with human diseases, for most of common complex diseases, the identified genetic variants only account for a small proportion of heritability. Challenges remain in finding additional unknown genetic variants predisposing to complex diseases. With the advance in next-generation sequencing technologies, sequencing studies have become commonplace in genetic research. The ongoing exome-sequencing and whole-genome-sequencing studies generate a massive amount of sequencing variants and allow researchers to comprehensively investigate their role in human diseases. The discovery of new disease-associated variants can be enhanced by utilizing powerful and computationally efficient statistical methods. In this paper, we propose a functional analysis of variance (FANOVA) method for testing an association of sequence variants in a genomic region with a qualitative trait. The FANOVA has a number of advantages: (1) it tests for a joint effect of gene variants, including both common and rare; (2) it fully utilizes linkage disequilibrium and genetic position information; and (3) allows for either protective or risk-increasing causal variants. Through simulations, we show that FANOVA outperform two popularly used methods – SKAT and a previously proposed method based on functional linear models (FLM), – especially if a sample size of a study is small and/or sequence variants have low to moderate effects. We conduct an empirical study by applying three methods (FANOVA, SKAT and FLM) to sequencing data from Dallas Heart Study. While SKAT and FLM respectively detected ANGPTL 4 and ANGPTL 3 associated with obesity, FANOVA was able to identify both genes associated with obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号