首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Epoxide hydrolase from Aspergillus niger was immobilized onto the modified Eupergit C 250 L through a Schiff base formation. Eupergit C 250 L was treated with ethylenediamine to introduce primary amine groups which were subsequently activated with glutaraldehyde. The amount of introduced primary amine groups was 220 μmol/g of the support after ethylenediamine treatment, and 90% of these groups were activated with glutaraldehyde. Maximum immobilization of 80% was obtained with modified Eupergit C 250 L under the optimized conditions. The optimum pH was 7.0 for the free epoxide hydrolase and 6.5 for the immobilized epoxide hydrolase. The optimum temperature for both free and immobilized epoxide hydrolase was 40 °C. The free epoxide hydrolase retained 52 and 33% of its maximum activity at 40 and 60 °C, respectively after 24 h preincubation time whereas the retained activities of immobilized epoxide hydrolase at the same conditions were 90 and 75%, respectively. Immobilized epoxide hydrolase showed about 2.5-fold higher enantioselectivity than that of free epoxide hydrolase. A preparative-scale (120 g/L) kinetic resolution of racemic styrene oxide using immobilized preparation was performed in a batch reactor and (S)-styrene oxide and (R)-1-phenyl-1,2-ethanediol were both obtained with about 50% yield and 99% enantiomeric excess. The immobilized epoxide hydrolase was retained 90% of its initial activity after 5 reuses.  相似文献   

2.
Mixed culture methanotrophic attached biofilms immobilized on diatomite particles in a three-phase fluidized bed reaction system were developed. Methane monooxygenase (MMO) activity on diatomite particles increased as soon as the lag phase ended. More than 90% of the MMO activity in the fluidized bed was attached. A biofilm concentration of 3.3c3.7mg dry weight cell (dwc) per g dry solid (DS) was observed. Batch experiments were performed to explore the possibility of producing epoxypropane by a propene–methane co-oxidation process. The effect of methane on the epoxidation of propene and the effect of propene on the growth of methanotroph was also studied. In continuous experiments, optimum mixed gas containing 35 methane, 20 propene and 45% oxygen were continuously circulated through the fluidized bed reactor to deliver substrates and extract product. Initial epoxypropane productivity was 110–150 μmol/day. The bioreactor operated continuously for 53 days without obvious loss of epoxypropane productivity.  相似文献   

3.
研究了微水-有机溶剂两相体系中固定化脂肪酶催化的萘甲酯的立体选择性水解反应,固定化酶活性受载体极性、水含量、有机溶剂的logP值,产物抑制的影响,据此构建了一种可以连续拆分产生(S)-(+)-萘普生的微水-有机溶剂两相体系。反应在一个具有回路的连续流搅拌反应器中进行,反应器中添加有采用吸附法固定化的脂肪酶,截体为一种弱极性的合成载体,水相连同固定化酶颗粒一起永久保持在反应器中,有机流动相带入底物,  相似文献   

4.
Laabe于1987年提出了生物催化剂工程(Biocatalyst engineering)和介质工程(Medium engineering)的概念[1]。有机相生物催化中溶剂的选择也是介质工程的内容之一。纯酶在有机相中的催化作用已有大量报道[2],但对完整细胞研究甚步。本文以甲基单胞菌(Methylomonas Z201)完整细胞为生物催化剂.丙烯环氧化为指标反应.研究有机溶剂对活性的影响并对催化活性——溶剂疏水性进行了相关性分析。研究了水一十六烷两相体系中十六烷含量和搅拌速度对丙烯环氧化速度的影响和细胞的操作稳定性。  相似文献   

5.
Lanne于1987年提出了生物催化剂工程(Biocatalyst engimeering)和介质工程(Medium enineering)的概念[1].有机相生物催化中溶剂的选择也是介质工程的内容之一。纯酶在有机相中的催化作用已有大量报道[2],但对完整细胞研究甚少。本文以甲基单胞菌(Methylomonos)Z201完整细胞为生物催化剂,丙烯环氧化为指标反应,研究有机溶剂对活性的影响并对催化活性-溶剂疏水性进行了相关性分析。研究了水-十六烷两相体系中十六烷含量和搅拦速度对丙烯环氧化速度的影响和细胞的操作稳定性。  相似文献   

6.
The production of acetone, butanol, and ethanol by two immobilized, sporulation-deficient (spo) Clostridium acetobutylicum P262 mutants which were held in the solventogenic phase was investigated. The spoA2 mutant, which was an early-sporulation mutant and did not form a forespore septum, produced higher solvent yields than did the spoB mutant which was a late-sporulation mutant and was blocked at a stage after forespore septum formation. The spoA2 mutant was also granulose and capsule negative. In a conventional batch fermentation, the wild-type strain produced 15.44 g of solvents per liter after 50 h at a productivity of 7.41 g of solvents per liter per day. The spoA2 mutant produced 15.42 g of solvents per liter at a productivity of 72.4 g of solvents per liter per day, with a retention time of 2.4 h in a continuous immobilized cell system employing a fluidized bed reactor. This represents a major advance, since the immobilization of wild-type cells showed similar increases in productivity but a ca. fivefold reduction in final product concentrations.  相似文献   

7.
Epoxide hydrolase from Aspergillus niger was immobilized onto the modified Eupergit C 250 L through a Schiff base formation. Eupergit C 250 L was treated with ethylenediamine to introduce primary amine groups which were subsequently activated with glutaraldehyde. The amount of introduced primary amine groups was 220 μmol/g of the support after ethylenediamine treatment, and 90% of these groups were activated with glutaraldehyde. Maximum immobilization of 80% was obtained with modified Eupergit C 250 L under the optimized conditions. The optimum pH was 7.0 for the free epoxide hydrolase and 6.5 for the immobilized epoxide hydrolase. The optimum temperature for both free and immobilized epoxide hydrolase was 40 °C. The free epoxide hydrolase retained 52 and 33% of its maximum activity at 40 and 60 °C, respectively after 24h preincubation time whereas the retained activities of immobilized epoxide hydrolase at the same conditions were 90 and 75%, respectively. Immobilized epoxide hydrolase showed about 2.5-fold higher enantioselectivity than that of free epoxide hydrolase. A preparative-scale (120 g/L) kinetic resolution of racemic styrene oxide using immobilized preparation was performed in a batch reactor and (S)-styrene oxide and (R)-1-phenyl-1,2-ethanediol were both obtained with about 50% yield and 99% enantiomeric excess. The immobilized epoxide hydrolase was retained 90% of its initial activity after 5 reuses.  相似文献   

8.
Optically active epoxides can be obtained by kinetic resolution of racemic mixtures using enantioselective epoxide hydrolases. To increase the productivity of the conversion of sparingly aqueous soluble epoxides, we investigated the use of a two-phase aqueous/organic system. A kinetic model which takes into account interphase mass transfer, enzymatic reaction, and enzyme inactivation was developed to describe epoxide conversion in the system by the epoxide hydrolase from Agrobacterium radiobacter. A Lewis cell was used to determine model parameters and results from resolutions carried out in the Lewis cell were compared to model predictions to validate the model. It was found that n-octane is a biocompatible immiscible solvent suitable for use as the organic phase. Good agreement between the model predictions and experimental data was found when the enzyme inactivation rate was fitted. Simulations showed that mass transfer limitations have to be avoided in order to maximize the yield of enantiomerically pure epoxide. Resolution of a 39 g/L solution of racemic styrene oxide in octane was successfully carried out in an emulsion batch reactor to obtain (S)-styrene oxide in high enantiomeric excess (>95% e.e.) with a yield of 30%.  相似文献   

9.
Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and nutrient supply only to the inlet of the reactor.  相似文献   

10.
The potentials of using organic reaction media in biotechnological conversions have already been demonstrated in several experimental studies. Examples of possible advantages are: possibility of higher substrate and/or product concentrations, favorable shift of reaction equilibria, reduced substrate and/or product inhibition, and facilitated product recovery. Especially water/organic solvent two-phase systems seem to possess several of these advantages. The solvent type will highly affect kinetics and stability of the (immobilized) biocatalyst, solubility and partitioning of reactants/products, and product recovery. Therefore the solvent choice can have a large influence on the economics of the two-liquid-phase biocatalytic process. Immobilization of the biocatalyst may be useful to provide protection against denaturating solvent effects. The polarity of the employed support material will also be decisive for the partitioning of substrates and products among the various phases.

A classification of biphasic systems, which is based on the possible types of theoretical concentration profiles and aqueous phase configurations, is discussed. Reversed micelles and aqueous two-liquid-phase systems can be considered as special cases. The design of two-liquid-phase bioreactors is dependent on the state of the biocatalyst, free or immobilized, and on the necessity for emulsification of one of the two liquid phases in the other. Many mass-transfer resistances, e.g. across the liquid/liquid interface, in the aqueous phase, across the liquid/solid interface, and in the biocatalyst phase, can limit the overall reaction rate. The epoxidation of alkenes in water/solvent two-phase systems is discussed to give an example of the scope of biotechnological processes that is obtained by using organic media. Finally, a design calculation of a packed-bed organic-liquid-phasel immobilized-biocatalyst reactor for the epoxidation of propene is given to illustrate some of the above aspects.  相似文献   


11.
Recombinant Escherichia coli cells harbouring haloalcohol dehalogenase and epoxide hydrolase were successfully immobilized by adsorption onto perlite and used to prepare (R)-epichlorohydrin from 1,3-dichloro-2-propanol by two-step biocatalysis in a specially designed reactor. Two-phase solution was used as the reaction system in order to improve the yield of epichlorohydrin. In the two-phase system containing 40% (v/v) cyclohexane, the yield of racemic epichlorohydrin formed in the first step was 73%, and the yield of (R)-epichlorohydrin with enantiomeric excess (ee) ≥99% increased from 19.2% to 25.1% in the second step. Ultimately, the yield of (R)-epichlorohydrin reached 26.4% by optimization of the flow rate of air and amount of immobilized cells. To our knowledge, this was the first report on production of (R)-epichlorohydrin from 1,3-dichloro-2-propanol by two-step biocatalysis using haloalcohol dehalogenase and epoxide hydrolase.  相似文献   

12.
Abstract: An economic evaluation is presented of lactic acid production in a membrane cell recycle reactor. From this evaluation it is concluded that the economic feasibility of the process is primarily limited by production capacity and product concentration and to a lesser extent by productivity. In membrane cell recycle reactor experiments and batch cultivation experiments with Lactobacillus helreticus , it is shown that the economic feasibility of the process using this organism is limited by organic acid inhibition resulting in energy uncoupling of anabolism and catabolism. Due to this inhibition, the maximum lactic acid concentration that can be obtained in the membrane reactor process is 50 g I1—. Furthermore it is shown that not only the fermentative conversion of lactose into lactic acid but also the hydrolysis of lactose into glucose and galactose is an important process. The β-galaetosidase activity needed for the hydrolysis is generated during the exponential growth phase of Lb. helveticus  相似文献   

13.
Duloxetine intermediate (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol was synthesized using ACA liquid-core immobilized Saccharomyces cerevisiae CGMCC No. 2230. The optimum culture time for ACA liquid-core immobilized cells was found to be 28 h. The optimum ACA liquid-core capsule formation conditions were found to be 90 % chitosan deacetylation, 30,000–50,000 chitosan molecular weight, 5.0 g/L chitosan, and pH 6.0 citrate buffer solution. The highest activity was found when reduction conditions were pH 6.0, 30 °C and 180 rpm. The ACA-immobilized cells can be reused nine times and only 40 % of the activity is retained after nine cycles. Product inhibition of reduction was observed in batch reduction. Continuous reduction in the membrane reactor was found to remove the product inhibition on reduction and improve production capacity. Conversion reached 100 % and enantiometric excess of (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol exceeded 99.0 % in continuous reduction of 5 g/L 3-N-methylamino-1-(2-thienyl)-1-propanone in the membrane reactor.  相似文献   

14.
Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.  相似文献   

15.
A four-phase reactor-separator (gas, liquid, solid, and immobilized catalyst) is proposed for fermentations characterized by a volatile product and nonvolatile substrate.In this reactor, the biological catalyst is immobilized onto a solid column packing and contacted by the liquid containing the substrate.A gas phase is also moved through the column to strip the volatile product into the gas phase. The Immobilized Cell Reactor-Separator (ICRS) consists of two basic gas-liquid flow sections: a cocurrent "enricher" followed by a countercurrent-"stripper".In this article, an equilibrium stage model of the reactor is developed to determine the feasibility and important operational variables of such a reactor-separator. The ICRS concept is applied to the ethanol from whey lactose fermentation using some preliminary immobilized cell reactor performance data. A mathematical model for a steady-state population based on an adsorbed monolayer of cells is also developed for the reactor. The ICRS model demonstrated that the ICRS should give a significant increase in reactor productivity as compared to an identically sized Immobilized Cell Reactor (ICR) with no separation. The gas-phase separation of the product also allows fermentation of high inlet substrate concentrations. The model is used to determine the effects of reactor parameters on ICRS performance including temperature, pressure, gas flow rates, inlet substrate concentration, and degree of microbial product inhibition.  相似文献   

16.
A novel extractive fermentation for butyric acid production from glucose, using immobilized cells of Clostridium tyrobutyricum in a fibrous bed bioreactor, was developed by using 10% (v/v) Alamine 336 in oleyl alcohol as the extractant contained in a hollow-fiber membrane extractor for selective removal of butyric acid from the fermentation broth. The extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor. The fermentation pH was self-regulated by a balance between acid production and removal by extraction, and was kept at approximately pH 5.5 throughout the study. Compared with conventional fermentation, extractive fermentation resulted in a much higher product concentration (>300 g/L) and product purity (91%). It also resulted in higher reactor productivity (7.37 g/L. h) and butyric acid yield (0.45 g/g). Without on-line extraction to remove the acid products, at the optimal pH of 6.0, the final butyric acid concentration was only approximately 43.4 g/L, butyric acid yield was 0.423 g/g, and reactor productivity was 6.77 g/L. h. These values were much lower at pH 5.5: 20.4 g/L, 0.38 g/g, and 5.11 g/L. h, respectively. The improved performance for extractive fermentation can be attributed to the reduced product inhibition by selective removal of butyric acid from the fermentation broth. The solvent was found to be toxic to free cells in suspension, but not harmful to cells immobilized in the fibrous bed. The process was stable and provided consistent long-term performance for the entire 2-week period of study.  相似文献   

17.
Kinetic expressions for the fermentative production of relatively high concentrations [12% (w/v)] of ethanol have been examined. Several expressions which account for both substrate and product inhibition have been formulated, and have been applied to suspended cell and immobilized cell reactors. Experimental data have been used to validate the kinetic expressions used, and the impact of combined inhibition on optimal reactor configuration has been assessed. The process implications of combined substrate and product inhibition for suspended and immobilized cell systems have been discussed.  相似文献   

18.
A cell-free extract prepared from Fusarium solani pisi grown on cutin, catalyzed the hydration of 18-hydroxy-9,10-epoxyoctadecanoic acid to 9,10,18-trihydroxyoctadecanoic acid while extracts from glucose-grown cells contained <6% of this activity. The product was identified by Chromatographic techniques and by radio gas-liquid chromatography of its periodate oxidation products. This epoxide hydrase activity had a pH optimum at 9.0 and it was located mainly in the 100,000g supernatant fraction. Rate of hydration of the epoxy acid was linear up to 15 min and up to a protein concentration of 30 μg/ml. This fungal epoxide hydrase has a molecular weight of 35,000, as determined by Sephadex G-100 gel filtration. It was partially purified by ammonium sulfate fractionation and gel filtration. The apparent Km and V of the enzyme was 2 × 10?4m and 222 nmoles/min/mg, respectively. Parachloromercuribenzoate strongly inhibited the enzyme, while N-ethylmaleimide was a less potent inhibitor. 1,1,1,-Trichloropropylene-2,3-oxide at 10?3m gave 50% inhibition of the hydration of 18-hydroxy-9,10-epoxyoctadecanoic acid. Kinetic analysis showed that trichloropropylene oxide was a competitive inhibitor. 18-Acetoxy-9,10-epox-yoctadecanoic acid, methyl 18-acetoxy-9,10-epoxyoctadecanoate, 9,10-epoxyoctadecanoic acid, and styrene oxide were not readily hydrated by this fungal epoxide hydrase showing that it has a stringent substrate specificity. Analysis of the enzymatic hydration product on boric acid-impregnated silica gel plates showed that the product obtained from the cis epoxide was exclusively erythro while acid hydrolysis of this epoxide gave rise to the expected threo product. This enzyme is novel in that it catalyzes cis hydration of epoxide while the other epoxide hydrases heretofore isolated catalyzed trans hydration of epoxides.  相似文献   

19.
Biphasic whole-cell biotransformations are known to be efficient alternatives to common chemical synthesis routes, especially for the production of, e.g. apolar enantiopure organic compounds. They provide high stereoselectivity combined with high product concentrations owing to the presence of an organic phase serving as substrate reservoir and product sink. Industrial implementation suffers from the formation of stable Pickering emulsions caused by the presence of cells. State-of-the-art downstream processing includes inefficient strategies such as excessive centrifugation, use of de-emulsifiers or thermal stress. In contrast, using the catastrophic phase inversion (CPI) phenomenon (sudden switch of emulsion type caused by addition of dispersed phase), Pickering-type emulsions can be destabilized efficiently. Within this work a model system using bis(2-ethylhexyl) phthalate (BEHP) as organic phase in combination with E. coli, JM101 was successfully separated using a continuous mixer settler setup. Compared to the state-of-the-art centrifugal separations, this process allows complete phase separation with no detectable water content or cells in the organic phase with no utilities/additives required. Furthermore, the concentration of the product is not affected by the separation. It is therefore a simple applicable method that can be used for separation of stable Pickering-type emulsions based on the knowledge of the point of inversion.  相似文献   

20.
Summary The rate of continuous alcohol fermentation by a mixture of free and immobilized yeast cells was found to be higher in a horizontal flow channel reactor than in a vertical column reactor under the same operational conditions. This higher fermentation rate in the horizontal reactor was attributed to accumulation of yeast cells in the reactor by free sedimentation and incomplete mixing in the direction of liquid flow. It was estimated that most of the ethanol in the horizontal bioreactor was produced by free cells in suspended or settled states. The relatively low ethanol production by the immobilized yeast cells on the ethanol production was considered due to higher product inhibition of fermentation rate within the support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号