首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Carbohydrate research》1986,153(1):69-77
A d-galacto-d-mannan ([α]D +72.0 and d-galactose-to-d-mannose ratio 1:1.14) was isolated from the seeds of Melilotus indica All., syn. M. parviflora Desf. The 1H- and 13C-n.m.r., and i.r. spectra indicated the presence of α-d-galactopyranosyl and β-d-mannopyranosyl residues. Methylation of the polysaccharide, followed by hydrolysis, afforded, 2,3,4,6-tetra-, 2,3,6-tri-, 2,3-di-, and 3,4-di-O-methyl-d-mannose, and 2,3,4,6-tetra- and 2,3,6-tri-O-methyl-d-galactose in the molar ratios of 1:2:22:6:27:3. Periodate oxidation of the polysaccharide, followed by reduction and hydrolysis, gave erythritol (1 mol) and glycerol (1.24 mol). Partial acid hydrolysis of the polysaccharide afforded O-β-d-mannopyranosyl-(1→2)-d-mannopyranose, O-β-d-mannopyranosyl-(1→4)-d-mannopyranose, O-α-d-galactopyranosyl-(1→6)-d-mannopyranose, O-α-d-galactopyranosyl-(1→4)-d-galactopyranose, and O-α-d-galactopyranosyl-(1→6)-O-β-d-mannopyranosyl-(1→4)-d-mannopyranose. A highly branched structure having a mannan backbone composed of 36% of (1→4)- and 10% of (1→2)-linked β-d-mannopyranosyl units is proposed for the galactomannan.  相似文献   

2.
Two l-arabino-d-galactan-containing glycoproteins having a potent inhibitory activity against eel anti-H agglutinin were isolated from the hot saline extracts of mature radish leaves and characterized to have a similar monosaccharide composition that consists of l-arabinose, d-galactose, l-fucose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid residues. The chemical structure features of the carbohydrate components were investigated by carboxyl group reduction, methylation, periodate oxidation, partial acid hydrolysis, and digestion with exo- and endo-glycosidases, which indicated a backbone chain of (1→3)-linked β-d-galactosyl residues, to which side chains consisting of α-(1→6)-linked d-galactosyl residues were attached. The α-l-arabinofuranosyl residues were attached as single nonreducing groups and as O-2- or O-3-linked residues to O-3 of the β-d-galactosyl residues of the side chains. Single α-l-fucopyranosyl end groups were linked to O-2 of the l-arabinofuranosyl residues, and the 4-O-methyl-β-d-glucopyranosyluronic acid end groups were linked to d-galactosyl residues. The O-α-l-fucopyranosyl-(1→2)-α-l-arabinofuranosyl end-groups were shown to be responsible for the serological, H-like activity of the l-arabino-d-galactan glycoproteins. Reductive alkaline degradation of the glycoconjugates showed that a large proportion of the polysaccharide chains is conjugated with the polypeptide backbone through a 3-O-d-galactosylserine linkage.  相似文献   

3.
《Carbohydrate research》1988,172(1):97-112
The complete structure of the acidic, extracellular, capsular polysaccharide of Rhizobium trifolii 843 has been elucidated by a combination of chemical, enzymic, and spectroscopic methods, confirming an earlier proposed sugar sequence and assigning the locations of the acyl substituents. The polysaccharide was depolymerized by a lyase into octasaccharide units which were uniform in carbohydrate composition and linkage. These units also contained a uniform distribution of acetyl and pyruvic acetal [O-(1-carboxyethylidene)] groups, and half of them were further acylated with d-3-hydroxybutanoyl groups. A much smaller proportion (<5%) of the oligomers was further acylated by a second d-3-hydroxy-butanoyl group. The locations of the substituents were determined chemically and by J-correlated, 1H-n.m.r. spectroscopy, proton nuclear Overhauser effect (n.O.e.)_ measurements, doubie-resonance 1H-n.m.r. spectroscopy, and 13C-n.m.r. spectroscopy. The composition and structure of the carbohydrate chain were determined by methylation analysis using g.l.c.-m.s. fast-atom-bombardment mass spectrometry, and n.m.r. studies on the reduced, deacylated oligomer. Structural studies were supplemented by n.m.r. analyses on the original polymer. The oligosaccharides were found to be branched octasaccharides with four sugar residues in each branch, and the carbohydrate sequence agreed well with that expected from earlier work. In the abbreviated sequence and structure (1a), the sugar residues are labelled “a” through “h”. The main chain (a–d) is composed of a 4-deoxy-α-l-threo-hex-4-enopyranosyluronic acid group (a) that is linked to O-4 of a 3-O-acetyl-d-glucosyluronic acid residue (b) which is β-linked to O-4 of a d-glucosyl residue (c). Residue c is β-linked to O-4 of the branching d-linked to O-4 of a d-glucosyl residue (d). The side chain consists of a substituted d-galactosyl group (h) which is β-linked to O-3 of residue 9 of a β-(1→4)-linked d-glucose trisaccharide (fragment e–f–g). The reducing end of the resulting tetrasaccharide (e–f–g–h) is β-linked to O-6 of the branching d-glucose residue (d). In the native polymer, this branching residue is α-linked to O-4 of the modified d-glucuronic acid residue (a) which is the unsaturated sugar in the oligomer. A small proportion of the O-2 atoms of the acetylated d-glucosyluronic acid residues is acetylated because of ester migration. The two terminal sugars (g and h) of the branch chain bear 4,6-O-(1-carboxyethylidene) groups. The d-galactosyl groups of half of the oligomers are acylated by d-3-hydroxybutanoyl groups at O-3. About 5% of the oligomers bear a second d-3-hydroxybutanoyl group at O-2 of the d-galactosyl group (h).  相似文献   

4.
Cell walls of each of five bacterial strains belonging to the genus Kribbella (family Nocardioidaceae, order Actinomycetales) contain a neutral polysaccharide (mannan) and teichulosonic acid of novel structure in different proportions. The novel teichulosonic acid found in strains VKM Ac-2500, VKM Ас-2568, VKM Ас-2572, and VKM Ас-2575 is a heteropolymer with an irregular structure where fragments I (predominant) alternate with fragments II (minor):The teichulosonic acid from Kribbella sp. VKM Ac-2527 has in general a structure similar to that above with the exception that the Pse residue is randomly glycosylated at O-4 with β-l-Rhap (along with α-d-Galp3OMe or α-d-Galp2,3OMe). The strain VKM Ac-2572 contained additionally teichuronic acid with the disaccharide repeating unit consisted of aminomannuronic acid and 2,3-diacetamido-2,3-dideoxy-α-glucopyranose. The mannan, a polysaccharide common to all of the strains, is built of (1→6)-linked α-d-mannopyranose substituted with α-d-mannopyranose at O-2. The structures of all the glycopolymers were established by a combination of chemical and NMR spectroscopic methods.  相似文献   

5.
Chemical shifts and coupling constants of 1H-n.m.r. spectra of the perbenzoates of α-d-glucopyranose (1), β-d-glucopyranose (2), α-d-galactopyranose (3), α-d-mannopyranose (4), β-d-mannopyranose (5), and α-d-galactofuranose (6) are reported. The 13C-n.m.r. chemical shifts of compounds 1-3 and 6, and of penta-O-benzoyl-β-d-galactofuranose (7) are given. Mass spectra were used to differentiate the furanoses 6 and 7 from the pyranose 3.  相似文献   

6.
A water-soluble galactomannan (C-3), [α]D20 +30°, isolated from the rod-like ascocarps of Cordyceps cicadae, was determined to be homogeneous, and the molecular weight was estimated by gel filtration to be 27,000. The polysaccharide is composed of d-mannose and d-galactose in the molar ratio of 4:3. The results of methylation analysis, Smith degradation, stepwise hydrolysis with acid, and 13C-n.m.r. spectroscopy indicated that the polysaccharide is of highly branched structure, and composed of α-d-(1→2)-linked and α-d-(1→6)-linked mannopyranosyl residues in the core; some of these residues are substituted at O-6 and O-2 with terminal β-d-galactofuranosyl and α-d-mannopyranosyl groups, and with short chains of β-d-(1→2)-linked d-galactofuranosyl units.  相似文献   

7.
The major product obtained on acetonation of d-mannose with a 2-molar excess of isopropenyl methyl (or ethyl) ether is 4,6-O-isopropylidene-α-d-mannopyranose (3a), the product of kinetic acetonation: a larger excess of the reagent leads, to the 2,3:4,6-diisopropylidene acetal (6). The course of the reaction and side-products formed were examined in detail. The 1,2,3-triacetate of 3a was deacetonated to give α-d-mannopyranose 1,2,3-triacetate; similar reactions were performed on the β anomers. The 1-acetate of the diacetal 6 could be selectively deacetonated to give 1-O-acetyl-2,3-O-isopropylidene-α-d-mannopyranose. The reactions provide access to protected derivatives of d-mannose, and partially acylated derivatives, having modes of substitution different from those obtainable by classical acetonation procedures conducted under conditions of thermodynamic control.  相似文献   

8.
The purified allergen preparation representing a certain fraction of an aqueous timothy pollen extractcontained ca. 20% carbohydrate, mainly as arabinose (7%) and galactose (13%). The protein content was 63%. Fractionation on DEAE-Sephadex and Sephadex G-100 gave one neutral and two acidic fractions, all containing protein, arabinose and galactose. The structure of the carbohydrate moiety was investigated by methylation analysis, periodate oxidation and enzyme incubation. The acidic fraction contained (1→6)-linked galactose residues, some being substituted on O-3 with arabinose. The neutral fraction consisted of a more extensively branched arabinogalactan with longer side chains of (1→3)- and (1→5)-linked arabinose. The arabinose was present mainly as α-l-arabinofuranosyl residues. Alkaline degradation and subsequent fractionation indicated the presence of a covalent linkage between hydroxyproline and arabinose. Periodate oxidation or incubation with α-l-arabinofuranosidase did not affect the allergenic activity of the extract.  相似文献   

9.
It had been established by methylation-structural analysis that dextran fraction S from Leuconostoc mesenteroides NRRL B-1355 has two types of α-d-glucopyranosyl residues that are linked through O-3, i.e., 35% of the residues carry a (1→3)-bond, and ~10% carry a (1→6)-bond in addition to a (1→3)-bond. Two similarly constituted dextrans have now been identified by methylation-structural analysis, namely, the S-type fractions from L. mesenteroides strains NRRL B-1498 and B-1501. The S-type fractions from L. mesenteroides strains B-1355, B-1498, and B-1501 are structurally differentiated from the α-d-glucans (characteristically insoluble) of certain cariogenic Streptococci which also contain both 3-O- and 3,6-di-O-substituted α-d-glucopyranosyl residues. 13C-N.m.r. spectra have been recorded at 90° for both the S- and L-type fractions of strains B-1355, b-1498, and B-1501. The L-type fractions have a low degree of branching through 3,6-di-O-substituted αd-glucopyranosyl residues, but no 3-mono-O-substituted residues. (Dextran fraction S of Streptococcus 5000 g.l.c. instrument equipped with hydrogen-flame detectors. On-column injection of glass columns (2 mm i.d. x 1.23 m) was employed for all such chromatography.The 13C-n.m.r. conditions and methods for preparation of dextran samples have been described(su4). In general, a Varian XL-100-15 spectrometer equipped with a Nicolet TT-100 system was employed in the Fourier-transform mode. Chemical shifts are expressed in p.p.m. relative to external tetramethylsilane, but were actually calculated by reference to the lock signal.  相似文献   

10.
A water-soluble glucan, AR-Glucan, from the roots of Angelica acutiloba was obtained homogeneous as determined by ultracentrifugal analysis, electrophoresis, and gel filtration. AR-Glucan was composed Of d-glucose, and its MW was estimated to be 13 500. Methylation analysis indicated that AR-Glucan contained 4-O- and 4,6-di-O-substituted glucosyl residues. 1H and 13C NMR data accorded with the results of methylation analysis, and the glycosidic linkages in AR-Glucan were shown to have the α-configuration. The results of β-amylase, α-amylase, and pullulanase treatments of AR-Glucan showed that it contained (1 → 4) linked α-d-glucosyl side chains of long chain length such as amylopectin. Thus, AR-Glucan is a (1 → 4) linked α-d-glucan to which are attached glucosyl side chains at O-6 of the glucosyl residues of the main chain.  相似文献   

11.
The configuration at the acetal carbon atom of pyruvic acid acetals present in some extracellular bacterial polysaccharides has been investigated. Assignment of the absolute configuration was made by comparing signals in the 13C- and 1H-n.m.r. spectra of the polysaccharides with those of model substances. The S-configuration was demonstrated in eight polysaccharides in which pyruvic acid is linked to O-4 and O-6 of D-glucopyranosyl or D-mannopyranosyl residues. The R-configuration was demonstrated in four polysaccharides in which pyruvic acid is linked to O-4 and O-6 of D-galactopyranosyl residues. Consequently, in each of these acetals, which form 1,3-dioxane rings, the methyl group is equatorial and the carboxyl group axial. The S-form was further demonstrated in four polysaccharides in which the pyruvic acid is linked to O-3 and O-4 of D-galactopyranosyl groups.  相似文献   

12.
The cotyledon of the seed of Mirabilis jalapa was found to contain a d-glucan. Methylation, periodate oxidation, and graded and enzymic hydrolysis studies were conducted to elucidate its structure. For every 38 d-glucosyl residues therein, 34 are (1→4)- and 3 are (1→3)-linked; the d-glucosyl unit at the branch point is linked through O-1, O-2, and O-4. In some places in the chain, there are at least three (1→3)-linked d-glucosyl residues in a sequence. Both α- and β-d-glucosidic linkages are present in the polysaccharide, the former preponderating. The d-glucan gave with iodine a faint blue color that had λmax 420 nm.  相似文献   

13.
The structure of the O-specific side-chains of the Shigella sonnei phase I lipopolysaccharide has been investigated. The side chains are composed of disaccharide repeating-units containing two uncommon sugar components, one of witch, 2-amino-2-deoxy-L-altruronic acid, has been identified previously. The other has now been identified as 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose. The uronic acid, as N-acetylated α-pyranosyl residues, is linked through O-4, and the diamino sugar, as β-pyranosyl residues, is linked through O-3. The pyranosyluronic acid residue assumes the 4C1 conformation in the polymer, with the carboxyl group in the axial position.  相似文献   

14.
A serologically active, acidic arabinomannan has been isolated from Mycobacterium smegmatis. The polysaccharide contains approximately 56 arabinosyl and 11 mannosyl residues, and 2 phosphate, 6 monoesterified succinate, and 4 ether-linked lactate groups. After saponification to remove succinyl groups, the polysaccharide can be separated into phosphorylated (55%) and nonphosphorylated (45%) forms, the former containing a little more arabinose and a little less mannose than the latter. The structures of these polysaccharides were investigated by 1H- and 13C-n.m.r. spectroscopy and methylation analysis, before and after selective cleavage of furanosyl linkages. The phosphorylated and nonphosphorylated forms of the polysaccharide were found to have similar, if not identical, structures. The main structural feature of the polysaccharides is the presence of chains of contiguous arabinofuranosyl residues linked α-(1→5). These chains are attached at O-4 of arabinopyranosyl residues that are present in a core region of the polysaccharide that also contains mannopyranosyl residues. Immunochemical studies demonstrated that the polysaccharide is an effective, precipitating antigen with antisera from rabbits immunized with cell walls or heat-killed cells of M. smegmatis. The polysaccharide is, however, more effective as a precipitating antigen after removal of the succinate groups, and completely ineffective after removal of arabinofuranosyl residues. The polysaccharide therefore contains an important antigen in common with the arabinogalactan lipopolysaccharide of the cell wall of the bacterium, i.e., chains of contiguous α-(1→5)-linked arabinofuranosyl residues.  相似文献   

15.
A number of novel, aryl and aralkyl d-mannopyranosides and 1-thio-d-mannopyranosides were synthesized for evaluation of insulin-like and insulin-antagonistic properties. The substituted-phenyl α-d-mannopyranosides were prepared by the general procedure of Helferich and Schmitz-Hillebrecht, the substituted-phenyl 1-thio-α-d-mannopyranosides by a method corresponding to the Michael synthesis of aromatic glycosides, and the aralkyl 1-thio-α-d-mannopyranosides by aralkylation of 2,3,4,6-tetra-O-acetyl-1-thio-α-d-mannopyranose (15) and subsequent O-deacetylation. Compound 15 was obtained by basic cleavage of the amidino group in 2-S-(tetra-O-acetyl-α-d-mannopyranosyl)-2-thiopseudourea hydrobromide, the product of the reaction of tetra-O-acetyl-α-d-mannosyl bromide with thiourea. Benzyl 1-thio-β-d-mannopyranoside, obtained by reaction of the sodium salt of 1-thio-β-d-mannopyranose with α-bromotoluene, and benzyl 1-thio-α-l-mannopyranoside were also synthesized, in order to assess the stereospecificity of the biological activities measured.  相似文献   

16.
An extracellular polysaccharide AVP was isolated from the fermented broth of coral-associated fungus Aspergillus versicolor LCJ-5-4. AVP was a mannoglucan with molecular weight of about 7 kDa, and the molar ratio of glucose and mannose was 1.7:1.0. On the basis of detailed one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopic analyses, the backbone of AVP was characterized to be composed of (1 → 6)-linked α-d-glucopyranose and (1 → 2)-linked α-d-mannopyranose units. The mannopyranose residues in the backbone were substituted mainly at C-6 by the side chain of (1 → 2)-linked α-d-mannopyranose trisaccharides units. The antioxidant activity of AVP was evaluated with the scavenging abilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide and hydroxyl radicals in vitro, and the results indicated that AVP had good antioxidant activity, especially scavenging ability on superoxide radicals. AVP was a novel extracellular polysaccharide with different structural characteristics from other extracellular polysaccharides and could be a potential source of antioxidant.  相似文献   

17.
The polysaccharide composition of a fucoidan preparation isolated from the brown alga Saccharina latissima (formerly Laminaria saccharina) was reinvestigated. The preparation was fractionated by anion-exchange chromatography, and the fractions obtained were analyzed by chemical methods combined with NMR spectroscopy. Several 2D procedures, including HSQC, HMQC-TOCSY, and HMQC-NOESY, were used to obtain reliable structural information from the complex spectra, and the signal assignments were additionally confirmed by comparison with the literature spectra of the related polysaccharides and synthetic oligosaccharides. In accordance with the previous data, the main polysaccharide component was shown to be a fucan sulfate containing a backbone of 3-linked α-l-fucopyranose residues sulfated at C-4 and/or at C-2 and branched at C-2 by single sulfated α-l-fucopyranose residues. In addition, three other types of sulfated polysaccharide molecules were detected in the total fucoidan preparation: (i) a fucogalactan having a backbone of 6-linked β-d-galactopyranose residues branched mainly at C-4 and containing both terminal galactose and fucose residues; (ii) a fucoglucuronomannan having a backbone of alternating 4-linked β-d-glucopyranosyluronic acid and 2-linked α-d-mannopyranose residues with α-l-fucopyranose residues as single branches at C-3 of α-d-Manp; and (iii) a fucoglucuronan having a backbone of 3-linked β-d-glucopyranosyluronic acid residues with α-l-fucopyranose residues as single branches at C-4. Hence, even a single algal species may contain, at least in minor amounts, several sulfated polysaccharides differing in molecular structure. Partial resolution of these polysaccharides has been accomplished, but unambiguous evidence on their presence as separate entities was not obtained.  相似文献   

18.
The water-soluble major polysaccharides from the seed of Coix lacryma-jobi var. ma-yuen eluted as a broad peak by gel filtration on Sepharose CL-2B. The mixture (CS-Glucan) was resolved into 7 glucans by HPLC on the column of Asahi-Pak GS-510 + GS-320. Similarities were observed between M, shown in the gel filtration profile and the elution volume in HPLC. Methylation analysis indicated that the ethanol-fractionated CS-glucan contained 4-O- and 4,6-di-O-substituted glucosyl residues. 1H and 13C NMR data accorded with the results of methylation analysis, and the glycosidic linkages were shown to have an α-configuration. Thus, CS-glucan contained (1 → 4) linked α-d-glucans to which are attached glucosyl side chains at O-6 of the main chain in a similar way to amylopectin. Each purified glucan was shown to have different absorption maxima ( > 550 nm or 530 nm) in the iodine reaction. The results of the methylation analysis and of the pullulanase digestion suggest that the 550 nm-glucan has a lower branching frequency and shorter side chains than the 530 nm-glucan. Although CS-glucan was found to have weak anti-complementary activity, HPLC-purified > 550 nm-glucan was found to be more potent than the 530 nm-glucan. Thus CS-glucan is highly heterogeneous, and the glucans which form a tight complex when tested with iodine, generally tend to have considerable anti-complementary activity.  相似文献   

19.
Periodate oxidation of LPG-1 established that N-acetylneuraminic acid residues are linked preponderantly α-(2→3) to D-galactose residues. The resistance of 2-acetamido-2-deoxyD-galactose residues to periodate oxidation suggests that they are linked at either O-3 or O-4 to D-galactose residues. After treatment of LPG-I with alkaline sulfite, ≈80% of 2-acetamido-2-deoxygalactose was recovered as the sulfonic acid derivative. The Gal→GalNAc disaccharide released from sialic-acid-free LPG-I by digestion with endo-2-acetamido-2-deoxy-α-D-galactosidase (which suggests an α-D-GalNAc→-L-Ser or -L-Thr linkage) gave a high color-yield in the Morgan—Elson reaction, indicating that 2-acetamido-2-deoxy-D-galactose residues are linked at C-3 to D-galactose residues. The migration of the released Gal-GalNAc disaccharide was the same as that of a standard sample of O-β-D-galactosyl-(1→3)-2-acetamido-2-deoxy-D-galactose. Treatment of sialic acid-free LPG-I with Streptococcus pneumoniae β-D-galactosidase, which hydrolyzes only galactosides linked β-D-(1→4) gave no free D-galactose, whereas treatment of LPG-I with bovine testes β-D-galactosidase released > 90% of D-galactose. These results provide evidence for β-D-Galp-(1→3)-α-D-GalNAcp-(1→3)-L-Ser or -L-Thr and α-NeuAc-(2→3)-β-D-Galp-(1→3)-α-D- GalNAcp-(1→3)-L-Ser or -L-Thr structures. The sensitivity of the methods used and the recovery of constituents following treatment of LPG-I do not rule out the occurrence of small amounts of other tri- or tetra-saccharide chains.  相似文献   

20.
Chen Y  Mao W  Tao H  Zhu W  Qi X  Chen Y  Li H  Zhao C  Yang Y  Hou Y  Wang C  Li N 《Bioresource technology》2011,102(17):8179-8184
A homogeneous exopolysaccharide, designated As1-1, was obtained from the culture medium of the mangrove endophytic fungus Aspergillus sp. Y16 and purified by anion-exchange and gel-permeation chromatography. Results of chemical and spectroscopic analyses, including one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopy showed that As1-1 was mainly composed of mannose with small amounts of galactose, and that its molecular weight was about 15 kDa. The backbone of As1-1 mainly consists of (1 → 2)-linked α-d-mannopyranose units, substituted at C-6 by the (1 → 6)-linked α-d-mannopyranose, (1→)-linked β-d-galactofuranose and (1→)-linked β-d-mannopyranose units. As1-1 possessed good in vitro antioxidant activity as evaluated by scavenging assays involving 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide radicals. The investigation demonstrated that As1-1 is an exopolysaccharide different from those of other marine microorganisms, and could be a potential antioxidant and food supplement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号