首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The lipid composition of a strain of each of two yeasts, Saccharomyces csrevisiae and Kloeckera apiculata , with different ethanol tolerances, was determined for cells grown with or without added ethanol. An increase in the proportion of ergosterol, unsaturated fatty acid levels and the maintenance of phospholipid biosynthesis seemed to be responsible for ethanol tolerance. The association of ethanol tolerance of yeast cells with plasma membrane fluidity, measured by fluorescence anisotropy, is discussed. We propose that an increase in plasma membrane fluidity may be correlated with a decrease in the sterol: phospholipid and sterol: protein ratios and an increase in unsaturation index.  相似文献   

2.
Recently, many genes involved in the formation of unsaturated and polyunsaturated fatty acids (PUFAs) were isolated. In most cases, their activities were confirmed by expressing them in the well-studied model organism Saccharomyces cerevisiae because its fatty acid compositions are very simple and it does not contain PUFAs. Taking advantage of its genetic tractability and increasing wealth of accessible data, many groups are attempting to produce various useful fatty acids in the model yeasts, mainly in S. cerevisiae. This review describes typical such examples including a very recent study on the expression of a fatty acid hydroxylase gene in fission yeast Schizosaccharomyces pombe. Furthermore, the impact of the genetically engineered alteration of fatty acid composition on the stress tolerance is presented because unsaturated fatty acids have crucial roles in membrane fluidity and signaling processes. Lastly, recent attempts at increasing lipid content in S. cerevisiae are discussed.  相似文献   

3.
Summary The effect of ethanol on exponential phase cultures of S. cerevisiae has been examined using l-alanine uptake and proton efflux as indices of ethanol tolerance. Preincubation with 2 M ethanol inhibited l-alanine uptake, proton efflux and fermentation rates. However, the effect of ethanol varied in yeast cells enriched with different fatty acyl residues. It was observed that cells enriched with polyunsaturated fatty acids acquired greater tolerance to ethanol as compared to monounsaturated fatty acids. By varying the degree of unsaturation of supplemented fatty acid, a sequential insertion of double bonds in yeast membrane lipid was achieved. Results demonstrated that S. cerevisiae became more resistant to ethanol with an increase in the degree of unsaturation and that membrane fluidity could be an important determinant of ethanol tolerance.  相似文献   

4.
When ethanol is added to the growth medium of Clostridium thermocellum ATCC 27405 and C9, a different membrane composition is observed after the period of growth arrest. Changes in fatty acid composition and some unsaturated, branched hydrocarbons have been monitored by GLC-MS. There is a marked increase in normal and anteiso-branched fatty acids at the expense of isobranched fatty acids and an increase in short and unsaturated fatty acids. Thus, an adaptive response to growth in the presence of ethanol induces a membrane containing fatty acids with lower melting points and produces a more ‘fluid’ membrane. The suggestion is made that these membrane changes may be maladaptive to the performance of C. thermocellum.  相似文献   

5.
生物膜是将细胞与环境分开的第一道屏障,是环境胁迫造成损伤的主要位点.脂肪酸是生物膜的主要组成成分,不饱和脂肪酸在决定生物膜的生理特性中具有重要作用,增加脂肪酸的不饱和程度能增加膜脂的流动性.近年来,很多研究发现,生物通过脂肪酸脱饱和维持膜的流动性来适应外界环境变化.本文主要从不饱和脂肪酸在环境温度胁迫、盐胁迫、氧化胁迫、酸碱胁迫、干旱胁迫、乙醇胁迫及铝胁迫中的作用研究进展进行了综述.  相似文献   

6.
To enhance the ethanol tolerance of Saccharomyces cerevisiae, the Arabidopsis thaliana FAD2 gene and/or the S. cerevisiae OLE1 gene were over-expressed in this yeast. The transformant over-expressing both these genes could not only synthesize dienoic fatty acids but also increased the unsaturated fatty acid content of membrane lipid and then showed the highest viability in the presence of 15% (v/v) ethanol.  相似文献   

7.
絮凝特性对自絮凝颗粒酵母耐酒精能力的影响及作用机制   总被引:7,自引:2,他引:5  
首次报道絮凝特性提高酵母菌耐酒精能力的现象及其机制。融合株SPSC与其两亲本粟酒裂殖酵母变异株和酿酒酵母变异株于 30℃经 18% (V/V)酒精冲击 7h的存活率分别为 52%、37%和 9%。细胞膜磷脂脂肪酸组成分析表明 ,两絮凝酵母 (融合株SPSC和粟酒裂殖酵母变异株 )的棕榈酸含量均约为非絮凝酵母 (酿酒酵母变异株 )的两倍 ,而棕榈油酸和油酸的含量明显低于后者。研究表明 ,当两絮凝酵母在培养中由于柠檬酸钠的作用 (抑制絮凝体的形成 )而以游离细胞生长存在时 ,其细胞膜磷脂棕榈酸含量显著下降 ,而棕榈油酸和油酸的含量明显增加 ,结果细胞膜磷脂脂肪酸组成特点与酿酒酵母变异株相似 ;而且实验表明 ,絮凝特性的消失伴随菌体耐酒精能力的急剧下降 ,变得与酿酒酵母变异株的水平相当。这些结果提示两絮凝酵母具有较强的耐酒精能力与其细胞膜磷脂脂肪酸组成中含有更高比例的棕榈酸有关。  相似文献   

8.
The alcohol-fermenting yeast Torulaspora delbrueckii No. 3110 was less tolerant to high temperature than Saccharomyces cerevisiae IFO 0224 as measured by alcohol fermentation during mild agitation: at 40°C, ethanol production of the two yeasts was 0.8 and 5.2 wt% respectively. The No. 3110 cells had much unsaturated fatty acid (C18:2) and little ergosterol, which suggests that the low tolerance might be caused by high membrane fluidity. Two types of miconazole-resistant mutants were isolated and characterized. Strain M47 had less unsaturated fatty acid and was found to be more temperature tolerant than No. 3110. Strain M59 was defective in ergosterol synthesis and was less temperature tolerant than No. 3110. These results indicate the importance of membrane rigidity in temperature tolerance.

M59 aaccumulated much less trehalose than No. 3110 did. Addition of trehalose to the permeabilized cell system of M59 restored the temperature sensitivity, but not when the trehalase inhibitor deoxynojirimycin was also added, which suggests that the accumulation and metabolism of trehalose is important for the expression of temperature tolerance.  相似文献   

9.
Pseudomonas putida S12 was more tolerant to ethanol when preadapted to supersaturating concentrations of toluene. Cellular reactions at the membrane level to the toxicities of both compounds were different. In growing cells of P. putida S12, sublethal concentrations of toluene resulted in an increase in the degree of saturation of the membrane fatty acids, whereas toxically equivalent concentrations of ethanol led to a decrease in this value. Contrary to this, cells also reacted to both substances with a strong increase of the trans unsaturated fatty acids and a corresponding decrease of the cis unsaturated fatty acids under conditions where growth and other cellular membrane reactions were totally inhibited. While the isomerization of cis to trans unsaturated fatty acids compensates for the fluidizing effect caused by ethanol, a decrease in the degree of saturation is antagonistic with respect to the chemo-physical properties of the membrane. Consequently, the results support the hypothesis that the decrease in the degree of saturation induced by ethanol is not an adaptation mechanism but is caused by an inhibitory effect of the compound on the biosynthesis of saturated fatty acids.  相似文献   

10.
Summary We analysed the fatty acid and sterol compositions of various Saccharomyces cerevisiae strains with ethanol tolerance varying from 4% to 12% (v/v) ethanol and at different concentrations of ethanol. The results we obtained agree with the existence of a relationship between membrane fluidity and ethanol tolerance but they do not support a direct role of unsaturated fatty acids in this tolerance. On the other hand, they support the importance of ergosterol in this phenomenon.  相似文献   

11.
Summary The effects of heat and ethanol shock on fatty acid composition and intracellular trehalose concentration of lager and ale brewing yeasts were examined. Exposure of cells to heat shock at 37°C or 10% (v/v) ethanol for 60 min resulted in a significant increase in the ratio of the total unsaturated to saturated fatty acyl residues and the intracellular trehalose concentration of cells. A similar increase in the amount of unsaturated fatty acids was observed in cells after 24 h of fermentation of 16°P (degree Plato) or 25°P wort, at which time more than 2% (v/v) ethanol was present in the growth medium. These results suggest that unsaturated fatty acids and high concentrations of intracellular trehalose may protect the cells from the inhibitory effects of heat and ethanol shock.  相似文献   

12.
The in vivo effects of ethanol on lipid synthesis in Escherichia coli have been examined. Under conditions which uncoupled fatty acid synthesis from phospholipid synthesis, ethanol decreased the amount of saturated fatty acids synthesized but had little effect on the selectivity of their incorporation into phospholipids. In the absence of fatty acid degradation and unsaturated fatty acid synthesis, E. coli was still able to adapt its membrane lipids to ethanol, while the inhibition of total fatty acid synthesis eliminated this response. During growth in the presence of ethanol, strain K1060 (an unsaturated fatty acid auxotroph) incorporated an increased amount of exogenous heptadecanoic acid (17:0) to compensate for the reduction in palmitic acid (16:0) available from biosynthesis. Thus, our results indicate that the reduced levels of saturated fatty acids observed in the phospholipids of E. coli following growth in the presence of ethanol result primarily from a decrease in the amounts of saturated fatty acids available for phospholipid synthesis.  相似文献   

13.
There are a number of process advantages which could be exploited through the use of thermophilic microorganisms for ethanol production. Energy savings through reduced cooling costs, higher saccharification and fermentation rates, continuous ethanol removal and reduced contamination have stimulated a search for routes to thermophilic or thermotolerant yeasts. These routes have included screening existing culture collections, temperature adaptation, mutagenesis and molecular techniques and finally isolating new strains. Varying success has been achieved, however, the most thermotolerant yeasts have come from fresh isolations from environments which experience high temperatures. Thermotolerant yeasts have been investigated for the following potential applications: simultaneous saccharification and fermentation of cellulose, where the high fermentation temperature allows more rapid and efficient enzymatic cellulose hydrolysis; whey fermentation, where high salt and low fermentable substrate concentrations make conditions difficult; and fermentation of D-xylose and cellobiose, which is essential for efficient conversion of woody biomass to ethanol. Ethanol and temperature tolerance are important characteristics for commercial yeast strains. Both characteristics are interactive and generally decrease with increasing temperature and ethanol concentration. Considerable research has been directed towards investigation of fatty acid composition changes in response to these stresses and the role of heat shock proteins in tolerance mechanisms. If thermotolerant yeasts are to be used in commercial processes, bioreactor configuration will play an important part in the design of production processes. Batch and fed-batch systems have been shown to be useful in some circumstances as have continuous flow systems, however, some of the newly isolated thermotolerant yeasts such as Kluyveromyces marxianus do not show the high growth rate under anaerobic conditions that is characteristic of Saccharomyces cerevisiae. Various immobilization techniques appear to offer a means of presenting and maintaining high biomass in anaerobic continuous flow reactors.  相似文献   

14.
A study of ethanol tolerance in yeast   总被引:10,自引:0,他引:10  
The ethanol tolerance of yeast and other microorganisms has remained a controversial area despite the many years of study. The complex inhibition mechanism of ethanol and the lack of a universally accepted definition and method to measure ethanol tolerance have been prime reasons for the controversy. A number of factors such as plasma membrane composition, media composition, mode of substrate feeding, osmotic pressure, temperature, intracellular ethanol accumulation, and byproduct formation have been shown to influence the ethanol tolerance of yeast. Media composition was found to have a profound effect upon the ability of a yeast strain to ferment concentrated substrates (high osmotic pressure) and to ferment at higher temperatures. Supplementation with peptone-yeast extract, magnesium, or potassium salts has a significant and positive effect upon overall fermentation rates. An intracellular accumulation of ethanol was observed during the early stages of fermentation. As fermentation proceeds, the intracellular and extracellular ethanol concentrations become similar. In addition, increases in osmotic pressure are associated with increased intracellular accumulation of ethanol. However, it was observed that nutrient limitation, not increased intracellular accumulation of ethanol, is responsible to some extent for the decreases in growth and fermentation activity of yeast cells at higher osmotic pressure and temperature.  相似文献   

15.
The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (?9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (?12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.  相似文献   

16.
To help elucidate mechanisms of larval ethanol tolerance seven isochromosomal lines of Drosophila melanogaster with different second chromosomes were fed a growth-limiting concentration of ethanol (4.5% v/v) and examined for associations between growth traits and biochemical characteristics that had previously been implicated in the determination of tolerance variation. Repeated measures of survival and development time over four generations verified the inherited nature of these traits. Significant variation among the lines were evident for flux from ethanol into lipid, for activity levels of alcohol dehydrogenase and glycerol-3-phosphate oxidase (GPO), and for levels of long chain and unsaturated fatty acids. A high degree of positive association occurred among the variables. A partial correlation analysis controlling for performance of the lines on ethanol-free medium revealed a strong association between the degree of long chain fatty acid content and line survival when ethanol was fed. The correlation between GPO activity and survival in an ethanol environment appeared to depend on the association of GPO activity with long chain fatty acid content. The positive correlations of flux from ethanol into lipid with many of the other variables suggested that the ADH pathway influenced the level of ethanol tolerance. These associations are all consistent with the hypothesis that the lipid content of body tissues, especially the levels of long chain and unsaturated fatty acids in cell membranes, may have an important influence on both spatial and interspecific variation in the ethanol tolerance of larvae.  相似文献   

17.
1. The fatty acid composition of the membrane lipids of a fatty acid desaturase mutant of Saccharomyces cerevisiae was manipulated by growing the organism in a medium containing defined fatty acid supplements. 2. Mitochondria were obtained whose fatty acids contain between 20% and 80% unsaturated fatty acids. 3. Mitochondria with high proportions of unsaturated fatty acids in their lipids have coupled oxidative phosphorylation with normal P/O ratios, accumulate K(+) ions in the presence of valinomycin and an energy source, and eject protons in an energy-dependent fashion. 4. If the unsaturated fatty acid content of the mitochondrial fatty acids is lowered to 20%, the mitochondria simultaneously lose active cation transport and the ability to couple phosphorylation to respiration. 5. The loss of energy-linked reactions is accompanied by an increased passive permeability of the mitochondria to protons. 6. Free fatty acids uncouple oxidative phosphorylation in yeast mitochondria and the effect is reversed by bovine serum albumin. 7. The free fatty acid contents of yeast mitochondria are unaffected by depletion of unsaturated fatty acids, and free fatty acids are not responsible for the uncoupling of oxidative phosphorylation in organelles depleted in unsaturated fatty acids. 8. It is suggested that the loss of energy-linked reactions in yeast mitochondria that are depleted in unsaturated fatty acids is a consequence of the increased passive permeability to protons, and is caused by a change in the physical properties of the lipid phase of the inner mitochondrial membrane.  相似文献   

18.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both promitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

19.
Studying the effects of saturated and unsaturated fatty acids on biological and model (liposomes) membranes could provide insight into the contribution of biophysical effects on the cytotoxicity observed with saturated fatty acids. In vitro experiments suggest that unsaturated fatty acids, such as oleate and linoleate, are less toxic, and have less impact on the membrane fluidity. To understand and assess the biophysical changes in the presence of the different fatty acids, we performed computational analyses of model liposomes with palmitate, oleate, and linoleate. The computational results indicate that the unsaturated fatty acid chain serves as a membrane stabilizer by preventing changes to the membrane fluidity. Based on a Voronoi tessellation analysis, unsaturated fatty acids have structural properties that can reduce the lipid ordering within the model membranes. In addition, hydrogen bond analysis indicates a more uniform level of membrane hydration in the presence of oleate and linoleate as compared to palmitate. Altogether, these observations from the computational studies provide a possible mechanism by which unsaturated fatty acids minimize biophysical changes and protect the cellular membrane and structure. To corroborate our findings, we also performed a liposomal leakage study to assess how the different fatty acids alter the membrane integrity of liposomes. This showed that palmitate, a saturated fatty acid, caused greater destabilization of liposomes (more “leaky”) than oleate, an unsaturated fatty acid.  相似文献   

20.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号