首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
To produce ethanol more economically than in a conventional process, it is necessary to attain high productivity and low production cost. To this end, a continuous ethanol production from sago starch using immobilized amylogucosidase (AMG) and Zymomonas mobilis cells was studied. Chitin was used for immobilization of AMG and Z. mobilis cells were immobilized in the form of sodium alginate beads. Ethanol was produced continuously in an simultaneous saccharification and ethanol fermentation (SSF) mode in a pacekd bed reactor. The maximum ethanol productivity based on the void volume, Vv, was 37 g/l/h with ethanol yield, Yp/s, 0.43 g/g (84% of the theoretical ethanol yield) in this system. The steady-state concentration of ethanol (46 g/l could be maintained in a stable manner over two weeks at the dilution rate of 0.46 h.  相似文献   

2.
Growth kinetics and ethanol production of Zymomonas mobilis in a bioreactor with cell recycle were modelled. High specific growth rates can be used to control excessive biomass accumulation in the system. Predicted peak productivity with a cell concentration of 80 g l−1, a dilution rate of 6.5 h−1, and a feed glucose concentration of 120 g l−1 is 350 g l−1 h−1. The design of a special recycle reactor using a filter which should permit the operating conditions required for the validation of the model is proposed.  相似文献   

3.
Continuous ethanol production in a one-stage continuous stirred tank fermentor without recycle was carried out using a yeast strain Saccharomyces cerevisiae. Different dilution rates were used. Cell and ethanol concentrations in the culture medium decreased with increasing dilution rates, and the maximum value of 3.0 g l−1h−1was found at a dilution rate of 0.340 h−1. Specific ethanol productivities increased as dilution rates were increased, and the highest value appeared at about the same dilution rate as that for the maximum fermentor productivity. A material balance equation, which relates total amount of spent medium to cell synsthesis, ethanol production, and overall maintenance, was introduced. The cellular yield and overall maintenance coefficients increased with increasing dilution rates. The fraction of limiting substrate utilized for overall maintenance, which includes the limiting substrate spent for purposes other than cell synthesis and ethanol production, decreased with increasing dilution rates. The non-product associated substrate utilization can be minimized if correct dilution rate is chosen.  相似文献   

4.
Direct ethanol production from raw starch was performed continuously using a combination of a reversibly soluble-autoprecipitating amylase (D-AS) in which Dabiase K-27 was immobilized covalently on an enteric coating polymer (hydroxypropyl methylcellulose acetate succinate, AS) as a carrier, and a flocculating yeast. Continuous production was carried out using a reactor equipped with a mixing vessel and a separation vessel. D-AS and the yeast were separated continuously from the product solution by self-sedimentation in the separation vessel and they were utilized repeatedly. In the continuous saccharification of raw starch by D-AS alone, the glucose productivity was about 3.6 g/l/h at a dilution rate (D) of 0.1 h−1. In the continuous ethanol production from raw starch by a combination of D-AS and flocculating yeast cells, high ethanol productivity up to 2.0 g/l/h was achieved at D=0.1 h−1. Although the enzymatic activity of D-AS is inactivated due to insolubilization of the enzyme by the accumulation of NaCl produced in controlling the pH in the reactor, it is possible to recover the D-AS enzymatic activity by removing the NaCl. This continuous fermentation system suggests a potential for effective ethanol production from raw starch, and it may be widely applicable in heterogeneous culture systems using solid substrates other than raw starch.  相似文献   

5.
Repeated-batch fermentation by a flocculating fusant, Saccharomyces cerevisiae HA 2, was done in a molasses medium that contained 20% (w/v) total sugar, at 30°C in an automatically controlled fermentor, and the effects of ethanol concentration on the specific growth rate and the specific production rate of ethanol were studied. Both the specific growth rate and the specific production rate of ethanol fell with increase of ethanol concentration, and there was a linear correlation between each rate and the concentration of thanol. The maximum specific growth rate (μmax) and the maximum specific production rate of ethanol (qmax) were 0.12 h−1 and 0.1 g ethanol/109 cells·h, respectively. The specific growth rate and the specific production rate of ethanol fell to zero at ethanol concentration of 89 g/l and 95 g/l, respectively. The number of viable cells, calculated from the linear inhibition equation, was 1.3 × 109 cells/ml for production of 85 g/l ethanol at a dilution rate (D1) of 0.2 h−1. Based on this estimation, a laboratory-scale continuous fermentation, using two fermentors in series, was done. In the second fermentor, 85 g/l ethanol was produced at a dilution rate (D1) of 0.2 h−1 by the active feedig of the fermented mash from the first fermentor into the second fermentor by pumping (hereafter called active feeding). To maintain the number of viable cells above 109 cells/ml in the second fermentor, a active feeding ratio of more than 23% was required. Under these conditions, 81 g/l ethanol was produced in the second fermentor at a dilution rate (Dt) of 0.25 h−1, and the high ethanol productivity of 20.3 g/l·h could be achieved. A bench-scale continuous fermentation, using two fermentors in series, with a active feeding ratio of 25% was done. An ethanol concentration of 84 g/l in the second fermentor at a dilution rate (Dt) of 0.25 h−1 was achieved, just as it was in the laboratory-scale fermentation test.  相似文献   

6.
Whey permeate was obtained by ultrafiltration of cottage cheese whey and supplemented with yeast extract. The lactose in the permeate was converted into lactic acid by Lactobacillus bulgaricus in a high-performance membrane bioreactor configured in the cell recycle mode. At a cell concentration of 10 g l−1, optimum productivity of lactic acid was 35 g l−1 h−1. Increasing the cell concentration to 30 g l−1 enabled the use of a dilution rate of 1 h−1 with complete substrate utilization. At 60 g l−1, productivity was over 80 g l−1 h−1 with complete substrte utilization; this is vastly superior to conventional batch fermentations.  相似文献   

7.
Optimum growth conditions for the fermentation of non-concentrated whey permeate by Kluyveromyces fragilis NRRL 665 have been defined. Use of 3.75 g yeast extract l?1, a growth temperature of 38°C and a pH of 4.0 allowed a maximum productivity of 5.23 g ethanol l?1 h?1 in continuous culture with a yield 91% of theoretical. Complete batch fermentation of permeate with 100 g lactose l?1 was possible with a maximum specific growth rate of 0.276 h?1 without any change in ethanol yield. Fermentation of concentrated permeate resulted, however, in a general decrease of specific substrate consumption rate, demonstrated by the inability to completely convert an initial 90 or 150 g lactose l?1 in continuous culture, even at dilution rates as low as 0.05 and 0.08 h?1, respectively. The decrease could be related to substrate inhibition, to an increase in osmotic pressure caused by lactose and salts, and to ethanol inhibition of both alcohol and biomass yield. The decrease in specific productivity could be counterbalanced by use of high cell density cultures, obtained by cell recycle of K. fragilis. Fermentation of a non-concentrated permeáte at a dilution rate of 1 h?1 resulted in a productivity of 22 g l?1 h?1 at 22 g ethanol l?1. Cell recycle using flocculating Kluyveromyces lactis NCYC 571 was also tested. With this strain a productivity of 9.3 g l?1 h?1 at 45 g product l?1 was attained at a dilution rate of 0.2 h?1, with an initial lactose concentration of 95 g l?1.  相似文献   

8.
Kinetics of 2,3-butanediol production by Klebsiella pneumoniae (NRRL B199) from glucose have been studied in a continuous bioreactor. The effect of oxygen supply rate and dilution rate on the product output rate and yield of 2,3-butanediol were investigated. For a feed glucose concentration of 100 g l−1, the optimum oxygen transfer rate is between 25.0–35.0 mmol l−1 h−1. Under these conditions, maximum product concentration obtained was 35 g l−1 at a dilution rate of 0.1 h−1 and the maximum product output rate obtained was 4.25 g l−1 h−1. The product yield based on the substrate utilized approached the theoretical value (50%) at low values of oxygen transfer rate but decreased with increasing oxygen transfer rate.  相似文献   

9.
A special loop recycle reactor with capillary crossflow filters was designed to enhance ethanol productivity. The new set-up did not comprise a classical reaction vessel with a stirrer but the working volume consisted only of the void volumes of the filters and the peripheral equipment, however, it behaved as a well mixed CSTR. A circulating pump provided for both mixing and recirculation of the culture fluid. Degassing was accomplished with a cyclone type device. Even if the circulating pump destroyed cells and automated backflushing of the filters could not prevent membrane fouling, maximum biomass concentration reached 98 g l−1 at a dilution rate of 4 h−1 and the maximum ethanol productivity achieved was 224 g l−1 h−1. Using the loop recycle reactor, the ethanol production model proposed in Part I of this study (Nipkow et al. (1986) J. Biotechnol. 3, 35–47) extended with a variable rate accounting for mechanical destruction of cells was verified. It was demonstrated that the predicted productivity of 350 g l−1 h−1 — exploiting the biological potential of Zymomonas mobilis — should be attainable if improved mechanical equipment in a filter recycle system is employed.  相似文献   

10.
Starch from wheat flour was enzymatically hydrolyzed and used for ethanol production by Zymmonas mobilis. The addition of a nitrogen source like ammonium sulfate was sufficient to obtain a complete fermentation of the hdyrolyzed strach. In batch culture a glucose concentration as high as 223 g/l could be fermented (conversion 99.5%) to 105 g/l of ethanol in 70 h with an ethanol yield of 0.47 g/g (92% of theoretical). In continuous culture the use of a flocculent strain and a fermentor with an internal settler resulted (D=1,4 h−1) in a high ethanol productivity of 70.7 g/l·h with: ethanol concentration 49.5 g/l, ethanol yield 0.50 g/g (98% of theoretical and substrate conversion 99%.  相似文献   

11.
The effects of temperature, pH and xylose concentration on the fermentation parameters of Candida shehatae and Pichia stipitis were evaluated. The optimum pH was in the region of pH 4–5.5, with an optimum fermentation temperature of 30°C. Maximum fermentation rates were reached at 50 g l−1 xylose. A maximum volumetric ethanol productivity of about 0.9 g (l h)−1 was obtained with both yeast strains. The ethanol yield of C. shehatae decreased considerably when cultivated above 30°C or when the xylose concentration was increased. Xylitol accumulated concomitantly. Xylitol production by P. stipitis was observed only during cultivation at 36°C. Whereas the ethanol yield of C. shehatae was usually about 75% of the theoretical maximum, it was 85–90% with P. stipitis.  相似文献   

12.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

13.
The capabilities of immobilized Fusarium oxysporum f. sp. lini, Mucor sp., and Saccharomyces cerevisiae in fermenting pentose to ethanol have been compared. S. cerevisiae was found to have the best fermentation rate on d-xylulose of 0.3 g l?1 h?1. By using a separate isomerase column for converting d-xylose to d-xylulose and a yeast column for converting d-xylulose to ethanol, an ethanol concentration of 32 g l?1 was obtained from 10% d-xylose. The ethanol yield was calculated to be 64% of the theoretical yield.  相似文献   

14.
The ability of two yeast strains to utilize the lactose in whey permeate has been studied. Kluyveromyces marxianus NCYC 179 completely utilized the lactose (9.8%), whereas Saccharomyces cerevisiae NCYC 240 displayed an inability to metabolize whey lactose for ethanol production. Of the two gel matrices tested for immobilizing K. marxianus NCYC 179 cells, sodium alginate at 2% (w/v) concentration proved to be the optimum gel for entrapping the yeast cells effectively. The data on optimization of physiological conditions of fermentation (temperature, pH, ethanol concentration and substrate concentration) showed similar effects on immobilized and free cell suspensions of K. marxianus NCYC 179, in batch fermentation. A maximum yield of 42.6 g ethanol l?1 (82% of theoretical) was obtained from 98 g lactose l?1 when fermentation was carried at pH 5.5 and 30°C using 120 g dry weight l?1 cell load of yeast cells. These results suggest that whey lactose can be metabolized effectively for ethanol production using immobilized K. marxianus NCYC 179 cells.  相似文献   

15.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

16.
Summary Some environmental affects on cell aggregation described in the literature are briefly summarized. By means of a biomass recirculation culture (Contact system), using the yeast Torulopsis glabrata, the aggregation behavior of cells in static and in dynamic test systems is described. Sedimentation times required to obtain 50 g · l–1 yeast dry matter in static systems were always higher than in dynamic ones.In addition to, influencing the biomass yield, the specific growth rate of the yeast also affected cell aggregation. The specific growth rate and therefore the aggregation could be regulated by the biomass recirculation rate as well as by the sedimenter volume.Abbreviations fo Overflow flow rate (l·h–1) - fR Recycle flow rate (l·h–1) - ft0t Total flow rate through the fermenter (l·h–1) - g Gram - h Hour - DR Fermenter dilution rate due to recycle (h–1) - DS Fermeter dilution rate due to substrate (h–1) - Dtot Total fermenter dilution rate (h–1) - l Liter - Specific growth rate (h–1) - PF Fermenter productivity (g·l–1·h–1) - PFS Overall productivity (g·l–1·h–1) - RpM Rates per minute - RS Residual sugar content in the effluent with respect to the substrate concentration (%) - Y Yield of biomass with respect to sugar concentration (%) - Sed 50 Sedimentation time to reach a YDM of 50 g·l–1 (min) - V Volume (l) - VF Fermenter volume (l) - VSed Sedimenter volume (l) - VVM Volumes per volume and minute - XF YDM in the fermenter (g·l–1) - XF YDM in the recycle (g·l–1) - XS Yeast dry matter due to substrate concentration (g·l–1) - YDM Yeast dry matter (g·l–1)  相似文献   

17.
《Process Biochemistry》1999,34(4):355-366
The production of pigment-free pullulan by Aureobasidium pullulans in batch and fed-batch culture was investigated. Batch culture proved to be a better fermentation system for the production of pullulan than the fed-batch culture system. A maximum polysaccharide concentration (31.3 g l−1), polysaccharide productivity (4.5 g l−1 per day), and sugar utilization (100%) were obtained in batch culture. In fed-batch culture, feed medium composition influenced the kinetics of fermentation. For fed-batch culture, the highest values of pullulan concentration (24.5 g l−1) and pullulan productivity (3.5 g l−1 per day) were obtained in culture grown with feeding substrate containing 50 g l−1 sucrose and all nutrients. The molecular size of pullulan showed a decline as fermentation progressed for both fermentation systems. At the end of fermentation, the polysaccharide isolated from the fed-batch culture had a slightly higher molecular weight than that of batch culture. Structural characterization of pullulan samples (methylation and enzymic hydrolysis with pullulanase) revealed the presence of mainly α-(1→4) (∼66%) and α-(1→6) (∼31%) glucosidic linkages; however, a small amount (<3%) of triply linked (1,3,4-, 1,3,6-, 1,2,4- and 1,4,6-Glc p) residues were detected. The molecular homogeneity of the alcohol-precipitated polysaccharides from the fermentation broths as well as the structural features of pullulan were confirmed by 13C-NMR and pullulanase treatments followed by gel filtration chromatography of the debranched digests.  相似文献   

18.
Amongst four carriers used, rice-straw was found to be superior in terms of ethanol production. The maximum productivity (17.84 gl−1 h−1) corresponded to a dilution rate of 0.39 h−1, the ethanol concentration being 45.80 gl−1. A multistage rhomboidal bioreactor was found to partially overcome the disruption effect caused by the generation of a large volume of carbon dioxide in the column. Increases in productivity of about 12.55% and 3.6%, respectively, were achieved using rhomboidal and tapered bioreactors as compared to the cylindrical bioreactor. It was observed that the generation time of cells, in both the immobilized and free states, was around 2.5 h. The ethanol yield (Yp/s) in the lower part of the reactor was less in comparison with other zones, where the substrate utilization efficiency was relatively higher.  相似文献   

19.
The oxygen requirements for ethanol production from d-xylose (10 or 20 g l?1) by Pachysolen tannophilus have been determined by controlling the availability of oxygen to shake flasks. Under anaerobic conditions no ethanol was produced whereas under aerobic conditions mainly biomass was formed. Semi-anaerobic conditions resulted in maximum ethanol production. By varying the stirring speed of a fermenter and supplying air to the liquid surface at various rates, the oxygen transfer rate (OTR) was controlled under semi-anaerobic conditions. By increasing the OTR from 0.05 to 16.04 mmol l?1 h?1, the ethanol yield coefficient decreased from 0.28 to 0.18 while the cell yield coefficient increased from 0.14 to 0.22. The accumulation of polyols decreased from 0.88 to 0.56 g l?1 with increasing OTR. At OTRs between 0.09 and 1.18 mmol l?1 h?1, specific ethanol productivity attained a maximum value of 0.07 h?1 and decreased with either increasing or decreasing OTR. The results indicate that the OTR must be carefully controlled for efficient ethanol production from d-xylose by P. tannophilus.  相似文献   

20.
The effect of tannins was investigated on growth and α-amylase (α-1,4-glucan 4-glucanohydrolase, EC 3.2.1.1) production by the edible fungal species Calvatia gigantea, grown in a laboratory-scale fermenter on acorn starch media containing up to 2 g tannins l−1. No inhibition of both growth and amylase excretion was observed when the fungus was cultivated on media containing 40 to 100 times higher tannin concentration than that reported to inhibit microbial growth. Amylase excretion was enhanced when starch was dry sterilized but specific growth rate was higher when starch was wet sterilized. Biomass and amylase production increased with increasing substrate concentration and specific growth rate reached its maximum value at 20 g l−1 starch concentration. The optimum pH of biomass and amylase productionwas 5.0–5.5 and 6.0−6.5 respectively and that of temperature was 29–32 and 29–30°C respectively. Maximum yields of 68 250 U amylase and 0.58–0.60 g biomass g−1 acorn were obtained at optimum growth conditions. A plot of reciprocal growth rate vs. reciprocal starch concentration made it possible to calculate Ks = 0.84 g acorn starch l−1 and μmax = 0.249 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号