首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multifunctional signaling protein p75 neurotrophin receptor (p75NTR) is a central regulator and major contributor to the highly invasive nature of malignant gliomas. Here, we show that neurotrophin-dependent regulated intramembrane proteolysis (RIP) of p75NTR is required for p75NTR-mediated glioma invasion, and identify a previously unnamed process for targeted glioma therapy. Expression of cleavage-resistant chimeras of p75NTR or treatment of animals bearing p75NTR-positive intracranial tumors with clinically applicable γ-secretase inhibitors resulted in dramatically decreased glioma invasion and prolonged survival. Importantly, proteolytic processing of p75NTR was observed in p75NTR-positive patient tumor specimens and brain tumor initiating cells. This work highlights the importance of p75NTR as a therapeutic target, suggesting that γ-secretase inhibitors may have direct clinical application for the treatment of malignant glioma.  相似文献   

2.
A prevalent model of Alzheimer’s disease (AD) pathogenesis postulates the generation of neurotoxic fragments derived from the amyloid precursor protein (APP) after its internalization to endocytic compartments. The molecular pathways that regulate APP internalization and intracellular trafficking in neurons are incompletely understood. Here, we report that 5xFAD mice, an animal model of AD, expressing signaling‐deficient variants of the p75 neurotrophin receptor (p75NTR) show greater neuroprotection from AD neuropathology than animals lacking this receptor. p75NTR knock‐in mice lacking the death domain or transmembrane Cys259 showed lower levels of Aβ species, amyloid plaque burden, gliosis, mitochondrial stress, and neurite dystrophy than global knock‐outs. Strikingly, long‐term synaptic plasticity and memory, which are completely disrupted in 5xFAD mice, were fully recovered in the knock‐in mice. Mechanistically, we found that p75NTR interacts with APP at the plasma membrane and regulates its internalization and intracellular trafficking in hippocampal neurons. Inactive p75NTR variants internalized considerably slower than wild‐type p75NTR and showed increased association with the recycling pathway, thereby reducing APP internalization and co‐localization with BACE1, the critical protease for generation of neurotoxic APP fragments, favoring non‐amyloidogenic APP cleavage. These results reveal a novel pathway that directly and specifically regulates APP internalization, amyloidogenic processing, and disease progression, and suggest that inhibitors targeting the p75NTR transmembrane domain may be an effective therapeutic strategy in AD.  相似文献   

3.
The invasive nature of cancers in general, and malignant gliomas in particular, is a major clinical problem rendering tumors incurable by conventional therapies. Using a novel invasive glioma mouse model established by serial in vivo selection, we identified the p75 neurotrophin receptor (p75NTR) as a critical regulator of glioma invasion. Through a series of functional, biochemical, and clinical studies, we found that p75NTR dramatically enhanced migration and invasion of genetically distinct glioma and frequently exhibited robust expression in highly invasive glioblastoma patient specimens. Moreover, we found that p75NTR-mediated invasion was neurotrophin dependent, resulting in the activation of downstream pathways and producing striking cytoskeletal changes of the invading cells. These results provide the first evidence for p75NTR as a major contributor to the highly invasive nature of malignant gliomas and identify a novel therapeutic target.  相似文献   

4.
The p75 neurotrophin receptor (p75NTR) plays a critical role in various neuronal and non-neuronal cell types by regulating cell survival, differentiation and proliferation. To evaluate the influence of p75NTR in breast cancer development, we have established and characterized breast cancer cells which stably overexpress p75NTR. We showed that p75NTR overexpression per se promoted cell survival to apoptogens with a concomitant slowdown of cell growth. The pro-survival effect is associated with an increased expression of the inhibitor of apoptosis protein-1 (c-IAP1), a decrease of TRAIL-induced cleavage of PARP, procaspase 9 and procaspase 3, and a decrease of cytochrome C release from the mitochondria. The anti-proliferative effect is due to a cell accumulation in G0/G1, associated with a decrease of Rb phosphorylation and an increase of p21waf1. Interestingly, inhibition of p21waf1 with siRNA not only restores proliferation but also abolishes the pro-survival effect of p75NTR, indicating the key role of p21waf1 in the biological functions of p75NTR. Finally, using a SCID mice xenograft model, we showed that p75NTR overexpression favors tumor growth and strongly increases tumor resistance to anti-tumoral treatment.Together, our findings suggest that p75NTR overexpression in breast tumor cells could favor tumor survival and contribute to tumor resistance to drugs. This provides a rationale to consider p75NTR as a potential target for the future design of innovative therapeutic strategies.  相似文献   

5.
The previous data showed that caffeic acid phenethyl ester (CAPE), a component of propolis, possesses inducing cell cycle arrest and antiproliferation effect on C6 glioma cells in vitro and in vivo. In the present study, C6 glioma cells treated with CAPE resulted in morphological changes to an astrocytic phenotype and increased the expression of glial differentiation marker proteins including glial fibrillary acidic protein (GFAP) and S-100β. In addition, with scratch assay and Boyden chamber assay, CAPE exhibited inhibitory effects on the motility and invasion of C6 glioma cells. Furthermore, CAPE induced the expression of nerve growth factor (NGF) and p75 neurotrophin receptor (p75NTR), which were involved in neural cell differentiation. CAPE could also inhibit the activity of matrix metalloproteinases (MMPs) and induce the expression of RhoB, a tumor suppressor. To examine the involvement of p75NTR in the anti-invasive property of CAPE, Western blotting and Boyden Chamber assay were performed by addition of an anti-p75NTR antibody in C6 cells. The results showed that blocking p75NTR could decrease the CAPE-induced expression of RhoB and the inactivation of MMP-2, -9 as well as the anti-invasion effect in C6 glioma cells. Furthermore, CAPE suppressed IκB-α phosphorylation which was down stream of p75NTR. Finally, the effect of CAPE on metastasis by lung colonization of the tumor cell in nude mice was also evaluated. It was found that the groups of nude mice injected with CAPE-pretreated cells could decrease both lung size and weight as compared to the positive control group which did not receive CAPE treatment. In addition, histological examination of the mouse lung sections showed that the CAPE-treated group inhibited the metastasis of C6 glioma cells. These data suggest CAPE possesses antitumor progression potential.  相似文献   

6.
The neurotrophin receptor p75NTR is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75NTR antibody or phage scFv library pre-panned against p75NTR are internalized by neurons expressing p75NTR; (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75NTR antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75NTR expression is upregulated in motor neurons in response to injury and in disease, the p75NTR antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier.  相似文献   

7.
Human periodontal ligament stem cells (hPDLSCs) are a promising source in regenerative medicine. Due to the complexity and heterogeneity of hPDLSCs, it is critical to isolate homogeneous hPDLSCs with high regenerative potential. In this study, p75 neurotrophin receptor (p75NTR) was used to isolate p75NTR+ and p75NTR? hPDLSCs by fluorescence‐activated cell sorting. Differences in osteogenic differentiation among p75NTR+, p75NTR? and unsorted hPDLSCs were observed. Differential gene expression profiles between p75NTR+ and p75NTR? hPDLSCs were analysed by RNA sequencing. α1 Integrin (ITGA1) small interfering RNA and ITGA1‐overexpressing adenovirus were used to transfect p75NTR+ and p75NTR? hPDLSCs. The results showed that p75NTR+ hPDLSCs demonstrated superior osteogenic capacity than p75NTR? and unsorted hPDLSCs. Differentially expressed genes between p75NTR+ and p75NTR? hPDLSCs were highly involved in the extracellular matrix‐receptor interaction signalling pathway, and p75NTR+ hPDLSCs expressed higher ITGA1 levels than p75NTR? hPDLSCs. ITGA1 silencing inhibited the osteogenic differentiation of p75NTR+ hPDLSCs, while ITGA1 overexpression enhanced the osteogenic differentiation of p75NTR? hPDLSCs . These findings indicate that p75NTR optimizes the osteogenic potential of hPDLSCs by up‐regulating ITGA1 expression, suggesting that p75NTR can be used as a novel cell surface marker to identify and purify hPDLSCs to promote their applications in regenerative medicine.  相似文献   

8.
While the role of p75NTR signaling in the regulation of nerve-related cell growth and survival has been well documented, its actions in osteoblasts are poorly understood. In this study, we examined the effects of p75NTR on osteoblast proliferation and differentiation using the MC3T3-E1 pre-osteoblast cell line. Proliferation and osteogenic differentiation were significantly enhanced in p75NTR-overexpressing MC3T3-E1 cells (p75GFP-E1). In addition, expression of osteoblast-specific osteocalcin (OCN), bone sialoprotein (BSP), and osterix mRNA, ALP activity, and mineralization capacity were dramatically enhanced in p75GFP-E1 cells, compared to wild MC3T3-E1 cells (GFP-E1). To determine the binding partner of p75NTR in p75GFP-E1 cells during osteogenic differentiation, we examined the expression of trkA, trkB, and trkC that are known binding partners of p75NTR, as well as NgR. Pharmacological inhibition of trk tyrosine kinase with the K252a inhibitor resulted in marked reduction in the level of ALPase under osteogenic conditions. The deletion of the GDI binding domain in the p75NTR-GFP construct had no effect on mineralization. Taken together, our studies demonstrated that p75NTR signaling through the trk tyrosine kinase pathway affects osteoblast functions by targeting osteoblast proliferation and differentiation.  相似文献   

9.
ProNGF and p75NTR are upregulated and induce cell death following status epilepticus (SE) in rats. However, less is known about the proneurotrophin response to SE in mice, a more genetically tractable species where mechanisms can be more readily dissected. We evaluated the temporal- and cell-specific induction of the proneurotrophins and their receptors, including p75NTR, sortilin, and sorCS2, following mild SE induced with kainic acid (KA) or severe SE induced by pilocarpine. We found that mature NGF, p75NTR, and proBDNF were upregulated following SE, while proNGF was not altered, indicating potential mechanistic differences between rats and mice. ProBDNF was localized to mossy fibers and microglia following SE. p75NTR was transiently induced primarily in axons and axon terminals following SE, as well as in neuron and astrocyte cell bodies. ProBDNF and p75NTR increased independently of cell death and their localization was different depending on the severity of SE. We also examined the expression of proneurotrophin co-receptors, sortilin and sorCS2. Following severe SE, sorCS2, but not sortilin, was elevated in neurons and astrocytes. These data indicate that important differences exist between rat and mouse in the proneurotrophin response following SE. Moreover, the proBDNF and p75NTR increase after seizures in the absence of significant cell death suggests that proneurotrophin signaling may play other roles following SE.  相似文献   

10.

Background

The cleavage of β-amyloid precursor protein (APP) generates multiple proteins: Soluble β-amyloid Precursor Protein Alpha (sAPPα), sAPPβ, and amyloid β (Aβ). Previous studies have shown that sAPPα and sAPPβ possess neurotrophic properties, whereas Aβ is neurotoxic. However, the underlying mechanism of the opposing effects of APP fragments remains poorly understood. In this study, we have investigated the mechanism of sAPPα-mediated neurotrophic effects. sAPPα and sAPPβ interact with p75 neurotrophin receptor (p75NTR), and sAPPα promotes neurite outgrowth.

Methods and Findings

First, we investigated whether APP fragments interact with p75NTR, because full-length APP and Aβ have been shown to interact with p75NTR in vitro. Both sAPPα and sAPPβ were co-immunoprecipitated with p75NTR and co-localized with p75NTR on COS-7 cells. The binding affinity of sAPPα and sAPPβ for p75NTR was confirmed by enzyme-linked immunosorbent assay (ELISA). Next, we investigated the effect of sAPPα on neurite outgrowth in mouse cortical neurons. Neurite outgrowth was promoted by sAPPα, but sAPPα was uneffective in a knockdown of p75NTR.

Conclusion

We conclude that p75NTR is the receptor for sAPPα to mediate neurotrophic effects.  相似文献   

11.
Cleavage of transmembrane receptors by γ-secretase is the final step in the process of regulated intramembrane proteolysis (RIP) and has a significant impact on receptor function. Although relatively little is known about the molecular mechanism of γ-secretase enzymatic activity, it is becoming clear that substrate dimerization and/or the α-helical structure of the substrate can regulate the site and rate of γ-secretase activity. Here we show that the transmembrane domain of the pan-neurotrophin receptor p75NTR, best known for regulating neuronal death, is sufficient for its homodimerization. Although the p75NTR ligands NGF and pro-NGF do not induce homerdimerization or RIP, homodimers of p75NTR are γ-secretase substrates. However, dimerization is not a requirement for p75NTR cleavage, suggesting that γ-secretase has the ability to recognize and cleave each receptor molecule independently. The transmembrane cysteine 257, which mediates covalent p75NTR interactions, is not crucial for homodimerization, but this residue is required for normal rates of γ-secretase cleavage. Similarly, mutation of the residues alanine 262 and glycine 266 of an AXXXG dimerization motif flanking the γ-secretase cleavage site within the p75NTR transmembrane domain alters the orientation of the domain and inhibits γ-secretase cleavage of p75NTR. Nonetheless, heteromer interactions of p75NTR with TrkA increase full-length p75NTR homodimerization, which in turn potentiates the rate of γ-cleavage following TrkA activation independently of rates of α-cleavage. These results provide support for the idea that the helical structure of the p75NTR transmembrane domain, which may be affected by co-receptor interactions, is a key element in γ-secretase-catalyzed cleavage.  相似文献   

12.
Neurotrophins comprise a group of neuronal growth factors that are essential for the development and maintenance of the nervous system. However, the immature pro-neurotrophins promote apoptosis by engaging in a complex with sortilin and the p75 neurotrophin receptor (p75NTR). To identify the interaction site between sortilin and p75NTR, we analyzed binding between chimeric receptor constructs and truncated p75NTR variants by co-immunoprecipitation experiments, surface plasmon resonance analysis, and FRET. We found that complex formation between sortilin and p75NTR relies on contact points in the extracellular domains of the receptors. We also determined that the interaction critically depends on an extracellular juxtamembrane 23-amino acid sequence of p75NTR. Functional studies further revealed an important regulatory function of the sortilin intracellular domain in p75NTR-regulated intramembrane proteolysis and apoptosis. Thus, although the intracellular domain of sortilin does not contribute to p75NTR binding, it does regulate the rates of p75NTR cleavage, which is required to mediate pro-neurotrophin-stimulated cell death.  相似文献   

13.
14.
Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that promote neural regeneration after transplantation into the injured central nervous system. Compared to the closely related Schwann cells, however, the biological characterization of OECs has remained fragmentary. This is due to the fact that the expression of OEC-specific markers is subject to complex regulation and that intricate ultrastructural analysis is essential to determine their localization. The p75 neurotrophin receptor (p75NTR) as the prototype OEC marker, for example, is only expressed by a minor population of neonatal rat OECs in situ. The major population carries O4-positive axonal fragments on their surface after dissociation and up-regulates p75NTR during culturing (Wewetzer et al. in Glia 49:577–587, 2005). In the present study, we investigated whether the cell surface determinant 27C7, defined by a monoclonal antibody to Schwann cells, is also expressed by neonatal rat OECs in situ and in vitro. Primary cell suspensions of the olfactory bulb displayed 27C7 expression of both p75NTR-negative and p75NTR-positive OECs, while immature oligodendrocytes and astrocytes were devoid of any 27C7 labeling. This together with the finding that the intrafascicular OECs of the olfactory nerves in the mucosa expressed 27C7 but not p75NTR, suggests that 27C7 was expressed by the entire OEC population in situ. Maintenance of OECs in the absence of olfactory neurons in organotypic slice culture up-regulated p75NTR but did not alter 27C7 expression. It is concluded that 27C7 unlike p75NTR is constitutively expressed by OECs and may, therefore, be a useful marker for characterization of neonatal OECs in situ and in vitro.  相似文献   

15.
The p75 neurotrophin receptor (p75NTR) mediates the death of specific populations of neurons during the development of the nervous system or after cellular injury. The receptor has also been implicated as a contributor to neurodegeneration caused by numerous pathological conditions. Because many of these conditions are associated with increases in reactive oxygen species, we investigated whether p75NTR has a role in neurodegeneration in response to oxidative stress. Here we demonstrate that p75NTR signaling is activated by 4-hydroxynonenal (HNE), a lipid peroxidation product generated naturally during oxidative stress. Exposure of sympathetic neurons to HNE resulted in neurite degeneration and apoptosis. However, these effects were reduced markedly in neurons from p75NTR−/− mice. The neurodegenerative effects of HNE were not associated with production of neurotrophins and were unaffected by pretreatment with a receptor-blocking antibody, suggesting that oxidative stress activates p75NTR via a ligand-independent mechanism. Previous studies have established that proteolysis of p75NTR by the metalloprotease TNFα-converting enzyme and γ-secretase is necessary for p75NTR-mediated apoptotic signaling. Exposure of sympathetic neurons to HNE resulted in metalloprotease- and γ-secretase-dependent cleavage of p75NTR. Pharmacological blockade of p75NTR proteolysis protected sympathetic neurons from HNE-induced neurite degeneration and apoptosis, suggesting that cleavage of p75NTR is necessary for oxidant-induced neurodegeneration. In vivo, p75NTR−/− mice exhibited resistance to axonal degeneration associated with oxidative injury following administration of the neurotoxin 6-hydroxydopamine. Together, these data suggest a novel mechanism linking oxidative stress to ligand-independent cleavage of p75NTR, resulting in axonal fragmentation and neuronal death.  相似文献   

16.
In the conjunctiva, repeated or prolonged exposure to injury leads to tissue remodeling and fibrosis associated with dryness, lost of corneal transparency and defect of ocular function. At the site of injury, fibroblasts (FB) migrate and differentiate into myofibroblasts (myoFB), contributing to the healing process together with other cell types, cytokines and growth factors. While the physiological deletion of MyoFB is necessary to successfully end the healing process, myoFB prolonged survival characterizes the pathological process of fibrosis. The reason for myoFB persistence is poorly understood. Nerve Growth Factor (NGF), often increased in inflamed stromal conjunctiva, may represent an important molecule both in many inflammatory processes characterized by tissue remodeling and in promoting wound-healing and well-balanced repair in humans. NGF effects are mediated by the specific expression of the NGF neurotrophic tyrosine kinase receptor type 1 (trkANGFR) and/or the pan-neurotrophin glycoprotein receptor (p75NTR). Therefore, a conjunctival myoFB model (TGFβ1-induced myoFB) was developed and characterized for cell viability/proliferation as well as αSMA, p75NTR and trkANGFR expression. MyoFB were exposed to acute and chronic NGF treatment and examined for their p75NTR/trkANGFR, αSMA/TGFβ1 expression, and apoptosis. Both NGF treatments significantly increased the expression of p75NTR, associated with a deregulation of both αSMA/TGFβ1 genes. Acute and chronic NGF exposures induced apoptosis in p75NTR expressing myoFB, an effect counteracted by the specific trkANGFR and/or p75NTR inhibitors. Focused single p75NTR and double trkANGFR/p75NTR knocking-down experiments highlighted the role of p75NTR in NGF-induced apoptosis. Our current data indicate that NGF is able to trigger in vitro myoFB apoptosis, mainly via p75NTR. The trkANGFR/p75NTR ratio in favor of p75NTR characterizes this process. Due to the lack of effective pharmacological agents for balanced tissue repairs, these new findings suggest that NGF might be a suitable therapeutic tool in conditions with impaired tissue healing.  相似文献   

17.
Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75NTR), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75NTR and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75NTR and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75NTR/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75NTR or TrkA. Interestingly, immunoreactivity to anti-p75NTR antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75NTR, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75NTR is turned on.  相似文献   

18.
Retinal pigment epithelium (RPE) exerts critical roles in the maintenance of the normal functions of the retina, whereas RPE dysfunction can induce retina neovascularization. p75 neurotrophin receptor (p75NTR) has been shown to play essential roles in angiogenesis. However, the function of p75NTR in the RPE remains unclear. In the present study, we demonstrated that p75NTR was highly expressed in the human choroidal neovascularization membranes. For in vitro study, RPE was exposed to hypoxia, and a knockdown of p75NTR was achieved via lentivirus-mediated RNA interference. The results showed that hypoxia induced the expression of p75NTR in the RPE, and the knockdown of p75NTR rescued RPE proliferation activity and inhibited apoptosis which induced by hypoxia. After the deletion of p75NTR, RPE-secreted pro-angiogenic factors (vascular endothelial growth factor and platelet-derived growth factor), inflammatory factors [interleukin 1 beta (IL1β), IL18, and stromal cell-derived factor 1], and matrix metalloproteinases (MMPs) (MMP3 and MMP9) were down-regulated under hypoxic conditions. While the RPE secreted anti-angiogenic factors (pigment epithelium-derived factor) and angiostatin, the tissue inhibitors of metalloproteinases (TIMPs) (TIMP-1 and TIMP-3) were up-regulated after the knockdown of p75NTR. The human umbilical vein endothelial tube formation ability can be inhibited when it is co-cultured with the supernatant extract from p75NTR-knockdown RPE under hypoxic induction. These results suggest that the knockdown of p75NTR suppressed pro-angiogenic factors which induced by hypoxia while promoting the anti-angiogenesis-related factors in the RPE. It is indicated that p75NTR could be a potential therapeutic target for RPE hypoxia or oxidative stress diseases.  相似文献   

19.
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival.  相似文献   

20.
While the study of in vitro regulation of neural stem cell lineage from both embryonic and adult neurospheres is greatly advanced, much less is known about factors acting in situ for neural stem cell lineage in adult brain. We reported that neurotrophin low affinity receptor p75NTR is present in the subventricular zone (SVZ) in adult male rats. We then characterized co-distribution of markers associated with precursor cells (nestin and PSA-NCAM) with growth factor receptors (p75NTR, trkA, EGFr) and proliferation-associated antigens (Ki67 and BrDU-uptake) in adult male rat by immunocytochemistry and confocal laser scan microscopy. Distribution of p75NTR-immunoreactivity (IR) was investigated using different mono- and polyclonal antisera. p75NTR is not co-distributed with glial fibrillary acid protein. It was found to be co-distributed with a small number of nestin-IR cells, whereas no coexistence with PSA-NCAM-IR was observed. Conversely, p75NTR-IR was present in numerous dividing cells (Ki-67-positive) and co-distributed with EGFr. In order to verify the possible association between p75NTR and cell death, we investigated co-distribution of p75NTR-IR with nuclear condensation images as visualized by Hoechst 33258 staining. While few images indicating nuclear condensation were observed in the SVZ, no coexistence with p75NTR was found. TrkA- and trkB-IR was not found in the SVZ. We also investigated p75NTR immunostaining on post-natal day 1 and day 16, because of the dramatic reduction of proliferating cells in SVZ over this time-interval. p75NTR-IR was not increased in the early post-natal phase. Thus, p75NTR seems to be associated with cell cycle regulation in SVZ in adult rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号