共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
W H Scouten A C De Graaf-Hess A De Kok H J Grande A J Visser C Veeger 《European journal of biochemistry》1978,84(1):17-25
Fluorescence energy transfer has been employed to estimate the minimum distance between each of the active sites of the 4 component enzymes of the pyruvate dehydrogenase multienzyme complex from Azotobacter vinelandii. No energy transfer was seen between thiochrome diphosphate, bound to the pyruvate decarboxylase active site, and the FAD of the lipoamide dehydrogenase active site. Likewise, several fluorescent sulfhydryl labels, which were specifically bound to the lipoyl moiety of lipoyl transacetylase, showed no energy transfer to either the flavin or thiochrome diphosphate. These observations suggest that all the active centers of the complex are quite far apart (greater than or equal to 40 nm), at least during some stages of catalysis. These results do not preclude the possibility that the distances change during catalysis. Several of the fluorescent probes used possessed multiple fluorescent lifetimes, as shown by determination of lifetime averages by both phase and modulation measurements on a phase fluorimeter. These lifetimes are shown to result from multiple factors, not necessarily related to multiple protein conformations. 相似文献
6.
The pyruvate-dehydrogenase complex from Azotobacter vinelandii. 总被引:1,自引:0,他引:1
T W Bresters R A de Abreu A de Kok J Visser C Veeger 《European journal of biochemistry》1975,59(2):335-345
The pyruvate dehydrogenase complex from Axotobacter vinelandii was isolated in a five-step procedure. The minimum molecular weight of the pure complex is 600,000, as based on an FAD content of 1.6 nmol-mg protein-1. The molecular weight is 1.0-1.2 X 10(6), indicating 1 mole of lipoamide dehydrogenase dimer per complex molecule. Sodium dodecylsulphate gel electrophoretical patterns show that apart from pyruvate dehydrogenase (Mr89,000) and lipoamide dehydrogenase (Mrmonomer 56,000) two active transacetylase isoenzymes are present with molecular weight on the gel 82,000 and 59,000 but probably actually lower. The pure complex has a specific activity of the pyruvate-NAD+ reductase (overall) reaction of 10 units-mg protein-1 at 25 degrees C. The partial reactions have the following specific activities in units-mg protein-1 at 25 degrees C under standard conditions: pyruvate-K3Fe(CN)6 reductase 0.14, transacetylase 3.6 and lipoamide dehydrogenase 2.9. The properties of this complex are compared with those from other sources. NADPH reduced the FAD of lipoamide dehydrogenase as well in the complex as in the free form. NADP+ cannot be used as electron acceptor. Under aerobic conditios pyruvate oxidase reaction, dependent on Mg2+ and thiamine pyrophosphate, converts pyruvate into CO2 and acetate; V is 0.2 mumol 02-min-1-mg-1, Km(pyruvate)0.3 mM. The kinetics of this reaction shows a linear 1/velocity-1/[pyruvate] plot. K3Fe(CN)6 competes with the oxidase reaction. The oxidase activity is stimulated by AMP and sulphate and is inhibited by acetyl-CoA. The partially purified enzyme contains considerable phosphotransacetylase activity. The pure complex does not contain this activity. The physiological significance of this activity is discussed. 相似文献
7.
The interaction between lipoamide dehydrogenase (E3) and dihydrolipoyl transacetylase (E2p) from the pyruvate dehydrogenase complex was studied during the reconstitution of monomeric E3 apoenzymes from Azotobacter vinelandii and Pseudomonas fluorescens. The dimeric form of E3 is not only essential for catalysis but also for binding to the E2p core, because the apoenzymes as well as a monomeric holoenzyme from P. fluorescens, which can be stabilized as an intermediate at 0 degree C, do not bind to E2p. Lipoamide dehydrogenase from A. vinelandii contains a C-terminal extension of 15 amino acids with respect to glutathione reductase which is, in contrast to E3, presumably not part of a multienzyme complex. Furthermore, the last 10 amino acid residues of E3 are not visible in the electron density map of the crystal structure and are probably disordered. Therefore, the C-terminal tail of E3 might be an attractive candidate for a binding region. To probe this hypothesis, a set of deletions of this part was prepared by site-directed mutagenesis. Deletion of the last five amino acid residues did not result in significant changes. A further deletion of four amino acid residues resulted in a decrease of lipoamide activity to 5% of wild type, but the binding to E2p was unaffected. Therefore it is concluded that the C-terminus is not directly involved in binding to the E2p core. Deletion of the last 14 amino acids produced an enzyme with a high tendency to dissociate (Kd approximately 2.5 microM). This mutant binds only weakly to E2p. The diaphorase activity was still high. This indicates, together with the decreased Km for NADH, that the structure of the monomer is not appreciably changed by the mutation. Rather the orientation of the monomers with respect to each other is changed. It can be concluded that the binding region of E3 for E2p is constituted from structural parts of both monomers and binding occurs only when dimerization is complete. 相似文献
8.
On the formation of an oxygen-tolerant three-component nitrogenase complex from Azotobacter vinelandii 总被引:10,自引:0,他引:10
Conditions are defined in which the oxygen-labile nitrogenase components from Azotobacter vinelandii can be protected against oxygen inactivation by the so-called Fe/S protein II. It is demonstrated that oxygen protection can be achieved by complex formation of the three proteins. Complex formation was studied by gel chromatography. Only when the three proteins are in the oxidized state and MgCl2 is present, can an oxygen-tolerant complex be isolated. Quantitative SDS/polyacrylamide gel electrophoresis of such complexes, yielded an average ratio of nitrogenase component 2/nitrogenase component 1 (Av2/Av1) of 2.4 +/- 0.5. Protection by Fe/S protein II was correlated with the amount of [2 Fe-2S] clusters present in the protein and not by the amount of protein. Measurements of the amount of iron and sulfide of Fe/S protein II showed that the iron and sulfide content of the protein was variable. The maximum values found indicate that Fe/S protein II contains two [2Fe-2S] clusters per dimer of 26 kDa. Full protection by Fe/S protein II was obtained with a ratio of Fe/S protein II/Av1 of 1.1 +/- 0.2; the Fe/S protein II containing two [2Fe-2S] clusters per dimer of 26 kDa. When Fe/S protein II contains less [2Fe-2S] clusters, more protein is necessary to obtain full protection. The three-component nitrogenase complex is also oxygen stable in the presence of MgATP or MgADP. Analysis in the ultracentrifuge showed that the major fraction of the reconstituted complex has a sedimentation coefficient centered around 34S. A small fraction (less than 30%) sediments with values centered around 111 S. This suggests an average mass for the oxygen-stable nitrogenase complex of 1.5 MDa. Taking into account the determined stoichiometry of the individual proteins, the molecular composition of the oxygen-stable nitrogenase complex is presumably 4 molecules of AV1,8--12 molecules of aAV2 and 4--6 molecules of Fe/S protein II containing two [2Fe-2S] clusters per dimer of 26 kDa. 相似文献
9.
The presence of activators(AMP and sulphate) or inhibitors(acetyl-CoA) has no influence on the Hill coefficient of the S-shaped [pyruvate]--velocity curve of either the pyruvate-NAD+ overall reaction(h equals 2.5) or that of the pyruvate-K3Fe(CN)6 ACTIVITY OF THE FIRST ENZYME (H EQUALs 1.3). pH STUDIES INDICATED THAT THE Hill coefficient is dependent on subunit ionization within the pyruvate-containing complex and not on those in the free complex. It is concluded that pyruvate conversion rather that pyruvate binding is responsible for the allosteric pattern. The activity is due to absence of a protein kinase, mainly regulated at the acetyl-CoA/CoA, and NADH/NAD+ levels and by the value of the energy charge. 相似文献
10.
Pyruvate dehydrogenase from Azotobacter vinelandii. Properties of the N-terminally truncated enzyme.
A F Hengeveld S E Schoustra A H Westphal A de Kok 《European journal of biochemistry》1999,265(3):1098-1107
The pyruvate dehydrogenase multienzyme complex (PDHC) catalyses the oxidative decarboxylation of pyruvate and the subsequent acetylation of coenzyme A to acetyl-CoA. Previously, limited proteolysis experiments indicated that the N-terminal region of the homodimeric pyruvate dehydrogenase (E1p) from Azotobacter vinelandii could be involved in the binding of E1p to the core protein (E2p) [Hengeveld, A. F., Westphal, A. H. & de Kok, A. (1997) Eur J. Biochem. 250, 260-268]. To further investigate this hypothesis N-terminal deletion mutants of the E1p component of Azotobacter vinelandii pyruvate dehydrogenase complex were constructed and characterized. Up to nine N-terminal amino acids could be removed from E1p without effecting the properties of the enzyme. Truncation of up to 48 amino acids did not effect the expression or folding abilities of the enzyme, but the truncated enzymes could no longer interact with E2p. The 48 amino acid deletion mutant (E1pdelta48) is catalytically fully functional: it has a Vmax value identical to that of wild-type E1p, it can reductively acetylate the lipoamide group attached to the lipoyl domain of the core enzyme (E2p) and it forms a dimeric molecule. In contrast, the S0.5 for pyruvate is decreased. A heterodimer was constructed containing one subunit of wild-type E1p and one subunit of E1pdelta48. From the observation that the heterodimer was not able to bind to E2p, it is concluded that both N-terminal domains are needed for the binding of E1p to E2p. The interactions are thought to be mainly of an electrostatic nature involving negatively charged residues on the N-terminal domains of E1p and previously identified positively charged residues on the binding and catalytic domain of E2p. 相似文献
11.
The gene encoding the dihydrolipoyltransacetylase component (E2) of the pyruvate dehydrogenase complex from Azotobacter vinelandii has been cloned in Escherichia coli. A plasmid containing a 2.8-kbp insert of A. vinelandii chromosomal DNA was obtained and its nucleotide sequence determined. The gene comprises 1911 base pairs, 637 codons excluding the initiation codon GUG and stop codon UGA. It is preceded by the gene encoding the pyruvate dehydrogenase component (E1) of pyruvate dehydrogenase complex and by an intercistronic region of 11 base pairs containing a good ribosome binding site. The gene is followed downstream by a strong terminating sequence. The relative molecular mass (64913), amino acid composition and N-terminal sequence are in good agreement with information obtained from studies on the purified enzyme. Approximately the first half of the gene codes for the lipoyl domain. Three very homologous sequences are present, which are translated in three almost identical units, alternated with non-homologous regions which are very rich in alanyl and prolyl residues. The N-terminus of the catalytic domain is sited at residue 381. Between the lipoyl domain and the catalytic domain, a region of about 50 residues is found containing many charged amino acid residues. This region is characterized as a hinge region and is involved in the binding of the pyruvate dehydrogenase and lipoamide dehydrogenase components. The homology with the dihydrolipoyltransacetylase from E. coli is high: 50% amino acid residues are identical. 相似文献
12.
600 MHz 1H-NMR spectroscopy demonstrates that the pyruvate dehydrogenase complex of Azotobacter vinelandii contains regions of the polypeptide chain with intramolecular mobility. This mobility is located in the E2 component and can probably be ascribed to alanine-proline-rich regions that link the lipoyl subdomains to each other as well as to the E1 and E3 binding domain. In the catalytic domain of E2, which is thought to form a compact, rigid core, also conformational flexibility is observed. It is conceivable that the N-terminal region of the catalytic domain, which contains many alanine residues, is responsible for the observed mobility. In the low-field region of the 1H-NMR spectrum of E2 specific resonances are found, which can be ascribed to mobile phenylalanine, histidine and/or tyrosine residues which are located in the E1 and E3 binding domain that links the lipoyl domain to the catalytic domain. In the 1H-NMR spectrum of the intact complex, these resonances cannot be observed, indicating a decreased mobility of the E1 and E3 binding domain. 相似文献
13.
The effects of changing ionic strength on the activity of the 2-oxoglutarate dehydrogenase complex from pig kidney cortex were explored. This enzyme complex is found to be influenced in many ways by the ionic strength of the reaction medium. The enzyme shows an optimum activity at 0.1 M ionic strength. Increase in ionic strength from 0.1 M to 0.2 M resulted in a decrease of S0.5 for 2-oxoglutarate, and in an increase of S0.5 for NAD. Changes in ionic strength over the range of 0.05-0.2 M have little, if any, effect on S0.5 for CoA. The Hill coefficient for 2-oxoglutarate and NAD at 0.2 M ionic strength was 1.0, whereas at 0.05 M ionic strength it was 0.85 and 1.2 for 2-oxoglutarate and NAD, respectively. At 0.05 M ionic strength the pH optimum of the enzyme ranges between 7.4-7.6, but at 0.15 M ionic strength the pH optimum shifts to 7.8. The magnitude of inhibition of enzyme activity by ATP is not influenced by changes in ionic strength in the absence of calcium. However, in the presence of Ca2+, increases in ionic strength lower the inhibitory effects of ATP. The Si0.5 for ATP in both presence and absence of Ca2+ was not affected by changes in ionic strength in the range of 0.1-0.2 M. In contrast, the Sa0.5 for ADP in the absence of Ca2+ decreases as ionic strength increases. In the presence of calcium and 0.2 M ionic strength ADP has no effect on 2-oxoglutarate dehydrogenase complex activity. 相似文献
14.
15.
16.
Adenosine deaminase (EC 3.5.4.4) was found to occur in the extract of Azotobacter vinelandii, strain 0, and purified by heating at 65°C, fractionation with ammonium sulfate, DEAE-cellulose chromatography and gel filtration on Sephadex G-150. Purified adenosine deaminase was effectively stabilized by the addition of ethylene glycol. The molecular weight of the enzyme was estimated to be 66,000 by gel filtration on Sephadex G-150. The enzyme specifically attacked adenosine and 2-deoxyadenosine to the same extent, and formycin A to a lesser extent. The pH optimum of the enzyme was observed at pH 7.2. Double reciprocal plot of initial velocity versus adenosine concentration was concave upward, and Hill interaction coefficient was calculated to be 1.5, suggesting the allosteric binding of the substrate. ATP inhibited adenosine deaminase in an allosteric manner, whereas other nucleotides were without effect. The physiological significance of the enzyme was discussed in relation to salvage pathway of purine nucleotides. 相似文献
17.
The domain structure of the dihydrolipoyl transacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii 总被引:2,自引:0,他引:2
Limited proteolysis with trypsin has been used to study the domain structure of the dihydrolipoyltransacetylase (E2) component of the pyruvate dehydrogenase complex of Azotobacter vinelandii. Two stable end products were obtained and identified as the N-terminal lipoyl domain and the C-terminal catalytic domain. By performing proteolysis of E2, which was covalently attached via its lipoyl groups to an activated thiol-Sepharose matrix, a separation was obtained between the catalytic domain and the covalently attached lipoyl domain. The latter was removed from the column after reduction of the S-S bond and purified by ultrafiltration. The lipoyl domain is monomeric with a mass of 32.6 kDa. It is an elongated structure with f/fo = 1.62. Circulair dichroic studies indicates little secondary structure. The catalytic domain is polymeric with S20.w = 17 S and mass = 530 kDa. It is a compact structure with f/fo = 1.24 and shows 40% of the secondary structure of E2. The cubic structure of the native E2 is retained by this fragment as observed by electron microscopy. Ultracentrifugation in 6 M guanidine hydrochloride in the presence of 2 mM dithiothreitol yields a mass of 15.8 kDa. An N-terminal sequence of 36 amino acids is homologous with residues 370-406 of Escherichia coli E2. The catalytic domain possesses the catalytic site, but in contrast to the E. coli subunit binding domain the pyruvate dehydrogenase (E1) and lipoamide dehydrogenase (E3) binding sites are lost during proteolysis. From comparison with the E. coli E2 sequence a model is presented in which the several functions, such as lipoyl domain, the E3 binding site, the catalytic site, the E2/E2 interaction sites, and the E1 binding site, are indicated. 相似文献
18.
19.
R Hanemaaijer A H Westphal T Van Der Heiden A De Kok C Veeger 《European journal of biochemistry》1989,179(2):287-292
After limited proteolysis of the dihydrolipoyl transacetylase component (E2) of Azotobacter vinelandii pyruvate dehydrogenase complex (PDC), a C-terminal domain was obtained which retained the transacetylase active site and the quaternary structure of E2 but had lost the lipoyl-containing N-terminal part of the chain and the binding sites for the peripheral components, pyruvate dehydrogenase and lipoamide dehydrogenase. The C-terminus of this domain was determined by treatment with carboxypeptidase Y and shown to be identical with the C-terminus of E2. Together with the previously determined N-terminus and the known amino acid sequence of E2, a molecular mass of 27.5 kDa was calculated. From the molecular mass of the native catalytic domain, 530 kDa, and the symmetry of the cubic structures observed on electron micrographs, a 24-meric structure is concluded instead of the 32-meric structure proposed previously. From the effect of guanidine hydrochloride on the light-scattering of intact E2 it was concluded that dissociation occurs in a two-step reaction resulting in particles with an average mass 1/6 that of the original mass before the N----D transition takes place. Cross-linking experiments with the catalytic domain indicated that the multimeric E2 is built from tetramers and that the tetramers are arranged as a dimer of dimers. A model for the quaternary structure of E2 is given, in which it is assumed that the tetrameric E2 core of PDC is formed from each of the six morphological subunits located at the lateral face of the cube. Binding of peripheral components to a site that interferes with the cubic assembly causes dissociation, resulting in the unique small PDC of A. vinelandii. 相似文献
20.
Large single crystals of isocitrate dehydrogenase from Azotobacter vinelandii have been grown by vapor diffusion from ammonium sulfate and phosphate solutions. The crystals are tetragonal, space group P42212 with cell dimensions , . There are two molecules of 80,000 molecular weight per asymmetric unit. Native data to 5.5 Å resolution have been collected on a diffractometer. A rotation function using data between 10 Å and 6 Å resolution indicates three possible orientations of the non-crystallographic 2-fold axis relating the two molecules. 相似文献