首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R1 non-long terminal repeat retrotransposable elements insert specifically into the 28S rRNA genes of arthropods. One aspect of R1 evolution that has been difficult to explain is the presence of divergent lineages of R1 in the rDNA loci of the same species. Multiple lineages should compete for a limited number of insertion sites, in addition to being subject to the concerted evolution processes homogenizing the rRNA genes. The presence of multiple lineages suggests either the ability of the elements to overcome these factors and diverge within rDNA loci, or the introduction of new lineages by horizontal transmission. To address this issue, we attempted to characterize the complete set of R1 elements in the rDNA locus from five Drosophila species groups (melanogaster, obscura, testacea, quinaria, and repleta). Two major R1 lineages, A and B, that diverged about 100 MYA were found to exist in Drosophila. Elements of the A lineage were found in all 35 Drosophila species tested, while elements of the B lineage were found in only 11 species from three species groups. Phylogenetic analysis of the R1 elements, supported by comparison of their rates of nucleotide sequence substitution, revealed that both the A and the B lineages have been maintained by vertical descent. The B lineage was less stable and has undergone numerous, independent elimination events, while the A lineage has diverged into three sublineages, which were, in turn, differentially stable. We conclude that while the differential retention of multiple lineages greatly complicates its phylogenetic history, the available R1 data continue to be consistent with the strict vertical descent of these elements.  相似文献   

2.
Domestic horses represent a genetic paradox: although they have the greatest number of maternal lineages (mtDNA) of all domestic species, their paternal lineages are extremely homogeneous on the Y-chromosome. In order to address their huge mtDNA variation and the origin and history of maternal lineages in domestic horses, we analyzed 1961 partial d-loop sequences from 207 ancient remains and 1754 modern horses. The sample set ranged from Alaska and North East Siberia to the Iberian Peninsula and from the Late Pleistocene to modern times. We found a panmictic Late Pleistocene horse population ranging from Alaska to the Pyrenees. Later, during the Early Holocene and the Copper Age, more or less separated sub-populations are indicated for the Eurasian steppe region and Iberia. Our data suggest multiple domestications and introgressions of females especially during the Iron Age. Although all Eurasian regions contributed to the genetic pedigree of modern breeds, most haplotypes had their roots in Eastern Europe and Siberia. We found 87 ancient haplotypes (Pleistocene to Mediaeval Times); 56 of these haplotypes were also observed in domestic horses, although thus far only 39 haplotypes have been confirmed to survive in modern breeds. Thus, at least seventeen haplotypes of early domestic horses have become extinct during the last 5,500 years. It is concluded that the large diversity of mtDNA lineages is not a product of animal breeding but, in fact, represents ancestral variability.  相似文献   

3.
4.
5.
Non-mobile retrotransposons mdg1het and aurora localized in Drosophila melanogaster heterochromatin were studied. A novel retrotransposon aurora comprising 324 bp LTRs was revealed as a 5 kb insertion causing 5 bp duplication of integration site in the heterochromatic Stellate gene. All the aurora copies are immobilized in D. melanogaster heterochromatin and adjoining chromosome regions 40, 41C and 80BC. Mobile aurora copies were revealed in D. simulans euchromatin by in situ hybridization technique. A comparison of 2.5 kb sequence of immobile mdg1het (including a half of ORF2 and 3'-LTR) with the correspondent sequence of transposable mdg1 copy [9] allowed to conclude that evolution of mdg1 subfamilies occurred under the selective pressure for the ability to transpose. The time period passed since the aurora and mdg1 copies integrated in heterochromatin was roughly estimated via divergence extent between the left and right LTR; for aurora copy it is 0-0.15 Myr, and for mdg1het copies it is 0-0.7 Myr.  相似文献   

6.
R1 and R2 are non-long terminal repeat (non-LTR) retrotransposable elements that specifically insert in the 28S ribosomal RNA (rRNA) genes of insects. Using the Drosophila genus, which includes some of the best characterized insect taxa, we have conducted a number of studies on the evolution of these elements. We find that R1 and R2 are subject to the same recombinational forces that give rise to the concerted evolution of the rDNA units. The turnover of R1 and R2 elements can be readily documented in different strains of D. melanogaster using 5′ truncated elements as restriction-length polymorphisms. This turnover leads to uniform populations of elements with nucleotide sequence divergence of different copies averaging only 0.23% for the R2 and 0.47% for the R1 elements. Molecular phylogenetic analysis of elements from 16 different species of Drosophila suggests that these elements have been stable components of the rDNA locus for the 50–70 million year history of the Drosophila genus. Using changes at synonymous positions within the protein-encoding regions as estimates of the baseline substitution rate, it could be shown that R1 and R2 are evolving at rates similar to that of typical protein encoding genes provided corrections are made for the low codon bias of the elements. R1 and R2 are clearly well-adapted for their existence in the rDNA units of their host. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is recruited to the sites where homologous recombination is processed. Here, we report that loss of mammalian REV1 results in a specific defect in replication-associated gene conversion. We found that REV1 is targeted to laser-induced DNA damage stripes in a manner dependent on its ubiquitin-binding motifs, on RAD18, and on monoubiquitinated FANCD2 (FANCD2-mUb) that associates with REV1. Expression of a FANCD2-Ub chimeric protein in RAD18-depleted cells enhances REV1 assembly at laser-damaged sites, suggesting that FANCD2-mUb functions downstream of RAD18 to recruit REV1 to DNA breaks. Consistent with this suggestion we found that REV1 and FANCD2 are epistatic with respect to sensitivity to the double-strand break-inducer camptothecin. REV1 enrichment at DNA damage stripes also partially depends on BRCA1 and BRCA2, components of the FANCD2/BRCA supercomplex. Intriguingly, analogous to FANCD2-mUb and BRCA1/BRCA2, REV1 plays an unexpected role in protecting nascent replication tracts from degradation by stabilizing RAD51 filaments. Collectively these data suggest that REV1 plays multiple roles at stalled replication forks in response to replication stress.  相似文献   

8.
9.
10.
Although most non-long terminal repeat (non-LTR) retrotransposons are inserted throughout the host genome, many non-LTR elements in the R1 clade are inserted into specific sites within the target sequence. Four R1 clade families have distinct target specificity: R1 and RT insert into specific sites of 28S rDNA, and TRAS and SART insert into different sites within the (TTAGG)(n) telomeric repeats. To study the evolutionary history of target specificity of R1-clade retrotransposons, we have screened extensively novel representatives of the clade from various insects by in silico and degenerate polymerase chain reaction (PCR) cloning. We found four novel sequence-specific elements; Waldo (WaldoAg1, 2, and WaldoFs1) inserts into ACAY repeats, Mino (MinoAg1) into AC repeats, R6 into another specific site of the 28S rDNA, and R7 into a specific site of the 18S rDNA. In contrast, several elements (HOPE, WISHBm1, HidaAg1, NotoAg1, KagaAg1, Ha1Fs1) lost target sequence specificity, although some of them have preferred target sequences. Phylogenetic trees based on the RT and EN domains of each element showed that (1) three rDNA-specific elements, RT, R6, and R7, diverged from Waldo; (2) the elements having similar target sequences are phylogenetically related; and (3) the target specificity in the R1 clade was obtained once and thereafter altered and lost several times independently. These data indicate that the target specificity in R1 clade retroelements has changed during evolution and is more divergent than has been speculated so far.  相似文献   

11.
The data on sequence variation in the first hypervariable segment (HVSI) of human mitochondrial DNA (mtDNA) representing Caucasoid mtDNA lineages in the gene pools of Altaians and Khakassians are presented. Identification of the subgroups of Caucasoid mtDNA lineages found in the gene pools of the ethnic populations of the Altai-Sayan region and the adjacent territories, Altaians, Khakassians, Tuvinians, Buryats, and Yakuts was carried out. All Caucasoid mtDNA lineages belonged to groups H, HV1, J*, J1, J1b1, T1, T4, U1a, U2, U3, U4, U5a1, I, X and N1a. Taking into consideration possible contribution of southern Caucasoid and eastern European components to the formation of the anthropological type of Altai-Sayan ethnic populations, distribution of the revealed Caucasoid mtDNA lineages among the ethnic populations of the Central Asia, Western Asia, Caucasus, and Eastern Europe was examined. The applied approach permitted identification of 60% of mtDNA types the majority of which had southern Caucasoid origin. Less than 10% of mtDNA types were of eastern European origin. The gene pools of Altaians and Khakassians displayed the presence of autochthonous components represented by mtDNA types from subgroups U2 and U4.  相似文献   

12.
13.
14.
Nefedova LN  Kim AI 《Genetika》2007,43(10):1388-1395
Drosophila melanogaster retrotransposons of the gypsy group are considered to be potential errantiviruses. Their infectivity is caused by the functional activity of the third open reading frame (ORF3) encoding the Env protein, which was probably captured from baculoviruses. Mobile genetic elements (MGEs) of the gypsy group can be conventionally divided into three subgroups: with three ORFs, with a defective ORF3, and without the ORF3. To establish the patterns of evolution of gypsy retrotransposons in D. melanogaster, the members of the three subgroups were examined. Structural analysis of retrotransposons opus and rover, which carry a defective ORF3, as well as retrotransposons Burdock, McClintock, qbert, and HMS-Beagle, which lack the ORF3, suggests that the evolution of these MGEs followed the pattern of loosing the ORF3. At the same time, an MGE of the same subgroup, Transpac, may be an ancestral form, which had acquired the env gene and gave rise to the first errantiviruses. The capture of the ORF3 by retrotransposons provided their conversion to a fundamentally new state. However, the ORF3 in the genome is not subjected to strong selective pressure, because it is not essential for intragenomic transpositions. Because of this, the process of its gradual loss seems quite natural.  相似文献   

15.
R1 and R2 are distantly related non-long terminal repeat retrotransposable elements each of which inserts into a specific site in the 28S rRNA genes of most insects. We have analyzed aspects of R1 and R2 abundance and sequence variation in 27 geographical isolates of Drosophila melanogaster. The fraction of 28S rRNA genes containing these elements varied greatly between strains, 17-67% for R1 elements and 2-28% for R2 elements. The total percentage of the rDNA repeats inserted ranged from 32 to 77%. The fraction of the rDNA repeats that contained both of these elements suggested that R1 and R2 exhibit neither an inhibition of nor preference for insertion into a 28S gene already containing the other type of element. Based on the conservation of restriction sites in the elements of all strains, and sequence analysis of individual elements from three strains, nucleotide divergence is very low for R1 and R2 elements within or between strains (less than 0.6%). This sequence uniformity is the expected result of the forces of concerted evolution (unequal crossovers and gene conversion) which act on the rRNA genes themselves. Evidence for the role of retrotransposition in the turnover of R1 and R2 was obtained by using naturally occurring 5' length polymorphisms of the elements as markers for independent transposition events. The pattern of these different length 5' truncations of R1 and R2 was found to be diverse and unique to most strains analyzed. Because recombination can only, with time, amplify or eliminate those length variants already present, the diversity found in each strain suggests that retrotransposition has played a critical role in maintaining these elements in the rDNA repeats of D. melanogaster.  相似文献   

16.
17.
One objective of this study was to determine the effects of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) treatment on DNA synthesis in regenerating rat liver. Rats were subjected to a two-thirds hepatectomy followed 20 h later by i.p. injection of N-OH-AAF. 4 h after carcinogen injection, it was found that N-OH-AAF caused a dose-dependent inhibition of [3H]thymidine incorporation into liver DNA. This inhibition was followed by a gradual, but incomplete recovery beginning 28 h after carcinogen treatment. Radioimmunoassay of deoxyguanine-C8 adducts remaining in liver DNA indicated that the recovery began prior to detection of adduct removal. The second objective of the study was to determine the effects of DNA damage on the size distribution and elongation of nascent hepatocyte DNA. Hepatocytes, which have been shown to demonstrate a pattern of inhibition and subsequent recovery of DNA synthesis following UV irradiation similar to that seen in vivo upon treatment with N-OH-AAF (Zurlo and Yager, 1984), were cultured under conditions that promote replicative DNA synthesis. The size distribution of nascent DNA after UV irradiation was determined by pH step gradient alkaline elution analysis. [3H]Thymidine pulse times and subsequent chase times were adjusted to equalize amounts of DNA synthesis in control and UV-irradiated cells. The results show that UV irradiation caused a dose-dependent decrease in the size distribution of nascent DNA suggesting an inhibition of elongation. Pulse-chase studies revealed that subsequent joining of nascent chains in UV-irradiated hepatocytes occurred at a rate comparable to or faster than controls and that this could be inhibited by caffeine. The results obtained from both the in vivo and in vitro studies show that resumption of DNA synthesis and nascent strand elongation occur on damaged templates. These observations along with our previous studies demonstrating the ability of UV-irradiated hepatocytes to carry out enhanced reactivation of UV-irradiated herpes virus lend support to the idea that DNA damage leading to inhibition of DNA synthesis may induce SOS-type processes which if mutagenic may play a role in the initiation of carcinogenesis.  相似文献   

18.
19.
R Bodmer  R Carretto  Y N Jan 《Neuron》1989,3(1):21-32
Cell lineages that give rise to the PNS were studied using the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to visualized DNA replication immunocytochemically. The precursors of the PNS in the body segments of Drosophila embryos replicate their DNA in a spatially and temporally stereotyped pattern. The sequence of DNA replication within developing sensory organs suggests particular lineage relationships of the cells that constitute a sensory organ, i.e., neuron and associated support cells. In embryos that are mutant for the achaete-scute complex or daughterless, in which most or all of the PNS is missing, no BrdU-labeled cells were found in the appropriate regions, suggesting that these PNS precursors either do not form or fail to replicate. Thus, the BrdU technique allows determination as to whether a mutation affects the PNS precursors or terminal differentiation.  相似文献   

20.
The non-long-terminal repeat retrotransposable elements, R1 and R2, insert at unique locations in the 28S ribosomal RNA genes of insects. Based on the nucleotide sequences of these elements in the eight members of the melanogaster species subgroup of the genus Drosophila, they have been maintained by vertical germline transmission for the 17-20 million year history of this subgroup. The stable inheritance of R1 and R2 within these species has enabled a determination of their nucleotide substitution rates. The sequence of the R1 and R2 elements from D. ambigua, a member of the obscura species group, has also been determined to enable an extrapolation of this rate over an estimated 45-60 million years. The mean rate of substitutions at synonymous sites (K(s)) was 6.6 and 9.6 times the rate at replacement sites (K(a)) in the R1 and R2 elements, respectively. Both elements appear to have been under selective pressure to maintain their open reading frames and thus their ability to retrotranspose for most of their evolution in these lineages. Using the rate of change at synonymous sites (K(s)) as the best indicator of the nucleotide substitution rate, the mean K(s) values for R1 and R2 were 2.3 and 2.2 times that of the alcohol dehydrogenase (Adh) genes. However, this faster rate is a result of the lower codon usage bias of R1 and R2 compared with that of Adh. When the K(s) rates of R1 and R2 were compared with that of a larger number of nuclear genes available from at least two of the nine species under investigation, R1 and R2 were found to evolve in most lineages at rates similar to that of nuclear genes with low codon bias. The ability of R1 and R2 to maintain their presence in this species subgroup by retrotransposition while exhibiting rates of nucleotide evolution similar to nuclear genes suggests these transposition events are rare or not as error prone as that of retroviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号