首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies of artificial insemination of cranes and cryoconservation of their semen have been carried out in the nursery of rare species at the Oka Biosphere Reserve for many years. The criterion of successful cryoconservation of the semen is the obtaining of fertilized eggs after artificial insemination by the thawed semen. An experiment is described on artificial insemination of females of the white-naped crane Grus vipio by the frozen–thawed semen of the Siberian white crane G. leucogeranus after one-year storage of semen in liquid nitrogen. As a result, an interspecific hybrid of cranes was obtained, which confirmed the possibility of producing a bank of cryoconserved crane semen. The use of the white-naped crane females was due to the absence of conspecific males and unavailability of Siberian white crane females. Problems of artificial insemination and cryoconservation of semen of rare crane species are discussed.  相似文献   

2.
Studies of artificial insemination of cranes and cryoconservation of their semen have been carried out in the nursery of rare species at the Oka Biosphere Reserve for many years. The criterion of successful cryoconservation of the semen is the obtaining of fertilized eggs after artificial insemination by the thawed semen. An experiment is described on artificial insemination of females of the white-naped crane Grus vipio by the frozen–thawed semen of the Siberian white crane G. leucogeranusafter one-year storage of semen in liquid nitrogen. As a result, an interspecific hybrid of cranes was obtained, which confirmed the possibility of producing a bank of cryoconserved crane semen. The use of the white-naped crane females was due to the absence of conspecific males and unavailability of Siberian white crane females. Problems of artificial insemination and cryoconservation of semen of rare crane species are discussed.  相似文献   

3.
Quenching of singlet molecular oxygen (1ΔgO2) by α-tocopherol (I) involves the hydroxy function of the chromanol ring of I. In phosphatidylcholine (PC) uni- and multilamellar vesicles this structural element of I is localized at the interface polar headgroup/hydrophobic core. A dielectric constant of ? ~ 25 was determined for this special region of the PC bilayer. The ratio kQ/kR of rate constants of quenching processes (kQ) and irreversible reactions (kR) of I with 1ΔgO2 increases with decreasing polarity of the solvent. In ethanolic solutions where ? = 25.5, kQ/kR is about 40. Extrapolation of these results to phospholipid bilayers suggests that at the nearness of the ester carbonyl oxygen of the PC fatty acid moieties, α-tocopherol can deactivate approximately 40 1ΔgO2 molecules before being destroyed. It is concluded that in vivo, one may expect to find a higher kQ/kR ratio if the chromanol ring of I hides within the more hydrophobic interiors of the membrane surface peptides.  相似文献   

4.

Background

Contractile myofibroblasts (MFs) accumulate in the joint capsules of patients suffering from posttraumatic joint stiffness. MF activation is controlled by a complex local network of growth factors and cytokines, ending in the increased production of extracellular matrix components followed by soft tissue contracture. Despite the tremendous growth of knowledge in this field, inconsistencies remain in practice and prevention.

Methods and Findings

In this in vitro study, we isolated and cultured alpha-smooth muscle actin (α-SMA) positive human joint capsule MFs from biopsy specimens and investigated the effect of profibrotic and antifibrotic agents on MF function. Both TGF-β1 and PDGF significantly induced proliferation and increased extracellular matrix contraction in an established 3D collagen gel contraction model. Furthermore, both growth factors induced α-SMA and collagen type I gene expression in MFs. TGF-β1 down-regulated TGF-β1 and TGF-β receptor (R) 1 and receptor (R) 2 gene expression, while PDGF selectively down-regulated TGF-β receptor 2 gene expression. These effects were blocked by suramin. Interestingly, the anti-oxidant agent superoxide dismutase (SOD) blocked TGF-β1 induced proliferation and collagen gel contraction without modulating the gene expression of α-SMA, collagen type I, TGF-β1, TGF-β R1 and TGF-β R2.

Conclusions

Our results provide evidence that targeting the TGF-β1 and PDGF pathways in human joint capsule MFs affects their contractile function. TGF-β1 may modulate MF function in the joint capsule not only via the receptor signalling pathway but also by regulating the production of profibrotic reactive oxygen species (ROS). In particular, anti-oxidant agents could offer promising options in developing strategies for the prevention and treatment of posttraumatic joint stiffness in humans.  相似文献   

5.
Two different artificial chaperone systems were evaluated in this work using either detergents or CDs as the stripping agents. Upon dilution of urea-denatured α-amylase to a non-denaturing urea concentration in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to remove the detergent molecules. Our results by fluorescence, UV, turbidity measurement, circular dichroism, surface tension and activity assay indicated that the extent of refolding assistance was different due to different inter- and intra- molecular interactions in the two different systems. However, the high activity recovery in the presence of detergents, as the stripping agent, suggests that they can constitute suitable replacement for the more expensive and common stripping agent of cyclodextrins.  相似文献   

6.
Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc) of PD models when there has been a decrease in tyrosine hydroxylase (TH) positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9) for α-synuclein was injected in the substantia nigra of rats to model Parkinson''s disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1) on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action.  相似文献   

7.

Background

Parkinson disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein alpha-synuclein (α-syn). Increasing evidence points to inflammation as a chief mediator; however, the role of α-syn in triggering and sustaining inflammation remains unclear. In models of Alzheimer’s disease (AD), multiple sclerosis (MS) and neurotoxin models of PD, the chemokine CX3CL1 (fractalkine) and its receptor (CX3CR1) have important roles in modulating neuroinflammation.

Methods

To examine the role of fractalkine signaling in α-syn-induced-neuroinflammation and neurodegeneration, we used an in vivo mouse model in which human α-syn is overexpressed by an adeno associated viral vector serotype 2 (AAV2) and in vitro phagocytosis and protein internalization assays with primary microglia treated with aggregated α-syn.

Results

We observed that loss of CX3CR1 expression led to a reduced inflammatory response, with reduced IgG deposition and expression of MHCII 4 weeks post-transduction. Six months post transduction, AAV2 mediated overexpression of α-syn leads to loss of dopaminergic neurons, and this loss was not exacerbated in animals with deletion of CX3CR1. To determine the mechanism by which CX3CR1affects inflammatory responses in α-syn-induced inflammation, phagocytosis was assessed using a fluorescent microsphere assay as well as by microglial uptake of aggregated α-syn. CX3CR1-/- microglia showed reduced uptake of fluorescent beads and aggregated α-syn.

Conclusion

Our results suggest that one mechanism by which CX3CR1-/- attenuates inflammation is at the level of phagocytosis of aggregated α-syn by microglia. These data implicate fractalkine signaling as a potential therapeutic target for regulating inflammatory response in α-syn models PD.  相似文献   

8.
9.
10.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   

11.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   

12.
α-Synuclein (αS) is a protein with multiple conformations and interactions. Natively unfolded in solution, αS accumulates as amyloid in neurological tissue in Parkinson disease and interacts with membranes under both physiological and pathological conditions. Here, we used cryoelectron microscopy in conjunction with electron paramagnetic resonance (EPR) and other techniques to characterize the ability of αS to remodel vesicles. At molar ratios of 1:5 to 1:40 for protein/lipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol), large spherical vesicles are converted into cylindrical micelles ∼50 Å in diameter. Other lipids of the same charge (negative) exhibit generally similar behavior, although bilayer tubes of 150–500 Å in width are also produced, depending on the lipid acyl chains. At higher protein/lipid ratios, discoid particles, 70–100 Å across, are formed. EPR data show that, on cylindrical micelles, αS adopts an extended amphipathic α-helical conformation, with its long axis aligned with the tube axis. The observed geometrical relationship between αS and the micelle suggests that the wedging of its long α-helix into the outer leaflet of a membrane may cause curvature and an anisotropic partition of lipids, leading to tube formation.  相似文献   

13.
Ductal carcinoma in situ (DCIS) is an early stage noninvasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix (ECM) surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. Here we develop a mathematical model that incorporates the cross-talk between stromal and tumor cells, which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-β signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation. We then study a hybrid model for the interaction of cells with the tumor microenvironment (TME), in which epithelial cells (ECs) are modeled individually while the ECM is treated as a continuum, and show how these interactions affect the early development of tumors. Finally, we incorporate breakdown of the epithelium into the model and predict the early stages of tumor invasion into the stroma. Our results shed light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggest how epigenetic changes in transformed cells affect tumor progression.  相似文献   

14.
1. The behaviour of rat liver α-glucosidases on dextran gel (Sephadex G-100) columns was studied. A `retardation' of an acid α-glucosidase activity was observed. This activity was identified as lysosome α-(1→4)-glucosidase. A single gel-filtration step resulted in a 700-fold purification of the enzyme. The same technique was also used to purify the acid α-glucosidase of human kidney. 2. The acid α-glucosidases of both tissues show very similar pH optima when tested with maltose or glycogen as substrate.  相似文献   

15.
Bacillus subtillis ATCC 21770 was entrapped in a carrageenan gel, especially formulated for immobilization. Bacterial growth and α-amylase (1,4-α-d-glucan glucanohydrolase EC 3.2.1.1) production were tested. The bead suspensions were submitted to two aeration modes, one consisting of bubbling air into a round flask, the other involving sparging of air into an airlift fermenter. The latter system, which produces microbubbles, gave 40–70% increase in enzyme production over the former and a doubling of bacterial density within the beads was measured. The use of CaCl2instead of KCl as polymerization agent led to a better yield of α-amylase.  相似文献   

16.
17.
Prokaryotic adaptive immune systems use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR–Cas systems, contain a single protein, Cas13 (formerly C2c2) that when assembled with a CRISPR RNA (crRNA) forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR–Cas systems can be divided into four subtypes (A–D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, is required for degradation of target-RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A–D) CRISPR–Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications.  相似文献   

18.
Peptide arrays in which peptides were immobilized on cellulose membranes through photolinkers were synthesized. The peptides were subsequently detached from the arrays by ultraviolet (UV) photolysis for 3 h, and were used to search for functional peptides that inhibit the activity of α-amylase derived from human pancreatic juice. Amino acid replacement with high-molecular-size amino acids, Arg (R), Phe (F), Trp (W), or Tyr (Y), for the first and seventh residues of amylase inhibitor peptide, GHWYYRCW, as previous reported, led to enhancement of the inhibitory effect of the peptide on α-amylase. In particular, one of the resulting peptides, RHWYYRYW, showed a stronger inhibitory effect than acarbose (which is used as a hypoglycemic agent) or inhibitor peptide GHWYYRCW.  相似文献   

19.
Horseradish peroxidase—as an oxidase—converts propanaldehyde to acetaldehyde and formic acid. To some extent the enzyme also acts upon linear acids, thus mimicking even better the α-peroxidase activity of higher plants. In these reactions an electronically excited species—presumably the aldehyde—is generated, as revealed by sensitized emission. The species is long-lived; in accord with its triplet nature heavy substituents are required in the acceptor for efficient sensitization. Energy transfer occurs noncollisionally and does not appear to proceed by a long-range Förster-type T-S mechanism. A long-range triplet-triplet exciton transfer to an upper triplet state of the acceptor is proposed; then ISC occurs to the fluorescent state of the acceptor. Biological compounds which might originate from excited aldehydes are pointed out.  相似文献   

20.
Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313–320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out) conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384) and the β1 domain (E297) as well as an intrapeptide bond (pE315-pR317) were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号