首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An enzyme with -galactosidase activity and an apparent molecular weight of 82 kDa was purified from culture medium of Aspergillus niger. The N-terminal amino acid sequence of the purified protein shows similarity to the N-terminal amino acid sequence of -galactosidases from several other organisms. Oligonucleotides, based on the N-terminal amino acid sequence, were used as probes to clone the corresponding gene from a EMBL3 gene library of A. niger. The cloned gene (aglA) was shown to be functional by demonstrating that the 82 kDa -galactosidase is absent from a strain with a disruption of the agIA gene, and is over-produced in strains containing multiple copies of the aglA gene. Enzyme activity assays revealed that the 82 kDa -galactosidase A represents a minor extracellular -galactosidase activity in A. niger.  相似文献   

2.
Summary Candida pelliculosa var. acetaetherius is a strain of yeast which can utilize cellobiose as the carbon source. From a gene library prepared from this yeast, the -glucosidase gene has been cloned in a S. cerevisiae host using a chromogenic substrate, 5-bromo-4-chloro-3-indolyl--glucoside as an indicator. It was proved by Southern analysis that the DNA fragment carrying the -glucosidase gene originated from C. pelliculosa. -Glucosidase produced by S. cerevisiae transformants was secreted into the periplasmic space. In Candida, -glucosidase was not induced by cellobiose but was derepressed by lowering the concentration of glucose. The regulation of -glucosidase synthesis in S. cerevisiae carrying the cloned -glucosidase was not clear compared with that in Candida, however, the enzyme activity in low glucose medium (0.05%) was reproducibly higher than in high glucose medium (2%). We have found the sequence that controls the expression of the -glucosidase gene negatively in S. cerevisiae.  相似文献   

3.
4.
Summary The nucleotide sequence of the bglB gene, coding for the thermostable -glucosidase B of Clostridium thermocellum was determined. The coding region of 2265 bp was identified by comparison with the N-terminal amino acid sequence of -glucosidase B purified from Escherichia coli. The derived amino acid sequence corresponding to a polypeptide of Mr 84100 was confirmed by sequencing of the C-terminal peptide generated by cleavage with cyanogen bromide. The protein bears no resemblance to other bacterial -glucosidase sequences. However, extensive regions of homology were identified between the C. thermocellum enzyme and fungal -glucosidases. The N-terminal homologous region contains an amino acid sequence very similar to the active site of -glucosidase A3 from Aspergillus wentii. The striking sequence similarities between C. thermocellum -glucosidase B and Kluyveromyces fragilis -glucosidase suggest the possibility of a genetic exchange between thermophilic anaerobic bacteria and yeasts.  相似文献   

5.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   

6.
Summary We constructed plasmids carrying the Escherichia coli proB gene that encodes -glutamyl kinase, under the control of the yeast GAL1 promoter. This construction was carried out with both the wild-type proB + gene and a mutant allele, proB74, that specifies an enzyme resistant to feedback inhibition by proline. Yeast pro1 mutants harboring these plasmids are proline prototrophs. We conclude that the pro1 mutation results in a deficiency in the -glutamyl kinase activity in Saccharomyces cerevisiae. Expression of the proB74 allele in yeast resulted in enhanced resistance to the proline analogue l-azetidine-2-carboxylate and in a 2.4-fold elevation of the intracellular free proline levels. This result suggests that -glutamyl kinase is the rate limiting step in proline biosynthesis in yeast.  相似文献   

7.
A -lactoglobulin (BLG)/luciferase gene vector (p907), composed of a luciferase intronless gene inserted between the second and sixth BLG exons was constructed. Stable transfections of CID-9 cells with this vector, as well as with a series of additional vectors, were performed to define regulatory regions within the BLG sequence, and the contribution of the SV40 polyadenylation (PA) site to luciferase expression. A relatively low level of luciferase activity was supported by vector p907. It was partially rescued by vector p906, in which the BLG 3 region, downstream of the luciferase cDNA, was replaced with the SV40 PA site. Flanking the SV40 region of vector p906, at its 3 end, with BLG sequences of exon 6/intron 6/exon 7 and the 3 region of the gene resulted in vector p904. This vector supported the highest luciferase activity, 10 times or 2.5 times higher than that measured in cells transfected with vectors p907 and p906, respectively. The induced activity supported by vector p904 is attributed to interaction between the SV40 PA site and elements of the distal part of the BLG 3 flanking sequences. The BLG 5 regulatory region of vector p904 encompasses a 3-kb promoter sequences. Deletion of 935 bp of its proximal end resulted in a 60% decrease in luciferase activity. Reduced activity was also seen with vector p915 lacking sequences of exon 1/intron 1/exon 2. This decrease could not be rescued with heterologous sequences of insulin intron 1, inserted upstream of the luciferase cDNA. Two sets of transgenic mice carrying vectors p907 and p904 were generated. Vector p907 supported only marginal luciferase activity in the mammary gland of all transgenic mice tested and luciferase RNA could not be detected by northern analysis. In contrast, 50% of the transgenic mice carrying vector p904 expressed luciferase RNA in the mammary gland and tissue-specific, hormonal-dependent activity was determined. However, the new p904 vector was not able to insulate the transgene from surrounding host DNA sequences, as reflected by its copy number-independent manner of expression. Nevertheless, vector p904 may represent a valuable tool for the expression of cDNAs in the mammary gland of transgenic animals.  相似文献   

8.
Summary The relationship between the promoter length of the Kluyveromyces fragilis -glucosidase gene and the level of its expression in Saccharomyces cerevisiae was studied by gene fusion between deleted promoter fragments of various lengths and the promoterless -galactosidase gene of Escherichia coli. The removal of a region from position-425 to-232 led to a tenfold increase in the expression of the gene. The same results were obtained for the reconstructed -glucosidase gene with the same promoter length. It is likely that the deletion of this part of the promoter removes negative regulatory elements which are functional in Saccharomyces cerevisiae. This increase in activity is the main event which may explain the high increase in gene expression (60-fold) previously observed for an upstream deletion obtained during subcloning experiments of the -glucosidase gene. It is also shown that the expression of the gene greatly depends upon the nature of the recipient strain, the growth phase of the cell and that of the vector carrying it.  相似文献   

9.
10.
A deficiency in the production of -alanine causes the black (b) phenotype of Drosophila melanogaster. This phenotype is normalized by a semi-dominant mutant gene Su(b) shown previously to be located adjacent to or within the rudimentary (r) locus. The r gene codes for three enzyme activities involved in de novo pyrimidine biosynthesis. Pyrimidines are known to give rise to -alanine. However, until recently it has been unclear whether de novo pyrimidine biosynthesis is directly coupled to -alanine synthesis during the tanning process. In this report we show that flies carrying Su(b) can exhibit an additional phenotype, resistance to toxic pyrimidine analogs (5-fluorouracil, 6-azathymine and 6-azauracil). Our interpretation of this observation is that the pyrimidine pool is elevated in the mutant flies. However, enzyme assays indicate that r enzyme activities are not increased in Su(b) flies. Genetic mapping of the Su(b) gene now places the mutation within the r gene, possibly in the carbamyl phosphate synthetase (CPSase) domain. The kinetics of CPSase activity in crude extracts has been studied in the presence of uridine triphosphate (UTP). While CPSase from wild-type flies was strongly inhibited by the end-product, UTP, CPSase from Su(b) was inhibited to a lesser extent. We propose that diminished end-product inhibition of de novo pyrimidine biosynthesis in Su(b) flies increases available pyrimidine and consequently the -alanine pool. Normalization of the black phenotype results.  相似文献   

11.
12.
Mevalonate kinase (MVK), the enzyme that catalyzes the phosphorylation of mevalonate to produce mevalonate 5-phosphate, is considered as a potential regulatory enzyme of the isoprenoid biosynthetic pathway. The Arabidopsis thaliana MVK gene corresponding to the MVK cDNA previously isolated has been cloned and characterized. RNAse protection analysis indicated that the expression of the MVK gene generates three mRNA populations with 5 ends mapping 203, 254 and 355 nt upstream of the MVK ATG start codon. Northern blot analysis showed that the MVK mRNA accumulates preferentially in roots and inflorescences. Histochemical analysis, with transgenic A. thaliana plants containing a translational fusion of a 1.8 kb fragment of the 5 region of the MVK gene to the -glucuronidase (GUS) reporter gene, indicated that the MVK 5-flanking region directs widespread expression of the GUS gene throughout development, although the highest levels of GUS activity are detected in roots (meristematic region) and flowers (sepals, petals, anthers, style and stigmatic papillae). The expression pattern of the MVK gene suggests that the role of the encoded MVK is the production of a general pool of mevalonate-5-phosphate for the synthesis of different classes of isoprenoids involved in both basic and specialized plant cell functions. Functional promoter deletion analysis in transfected A. thaliana protoplasts indicated that regulatory elements between positions –295 and –194 of the MVK 5-flanking region are crucial for high-level MVK gene expression.  相似文献   

13.
R. Spribille  G. Forkmann 《Planta》1982,155(2):176-182
Chalcone synthase activity was demonstrated in enzyme preparations from flowers of defined genotypes of Dianthus caryophyllus L. (carnation). In the absence of chalcone isomerase activity, which could be completely excluded by genetic methods, the first product formed from malonyl-CoA and 4-coumaroyl-CoA proved to be naringenin chalcone, followed by formation of naringenin as a result of chemical cyclization. In the presence of chalcone isomerase activity, however, naringenin was the only product of the synthase reaction. In vitro, both 4-coumaryl-CoA and caffeoyl-CoA were found to be used as substrates for the condensation reaction with respective pH optima of 8.0 and 7.0. The results of chemogenetic and enzymatic studies, however, showed that in vivo only 4-coumaroyl-CoA serves as substrate for the formation of the flavonoid skeleton. In confirmation of these results, an NADPH-dependent microsomal 3-hydroxylase activity could be demonstrated, catalyzing hydroxylation of naringenin and dihydrokaempferol in 3-position. Furthermore, a strict correlation was found between 3-hydroxylase activity and the gene r which is known to control the formation of 3, 4-hydroxylated flavonoid compounds.  相似文献   

14.
Summary Three -amylase inhibitors, designated Inh. I, II and III have been purified from the 70% ethanol extract of hexaploid wheat (Triticum aestivum L.) and characterized by amino acid analysis, N-terminal amino acid sequencing and enzyme inhibition tests. Inhibitors I and III have identical N-terminal sequences and inhibitory properties to those of the previously described 0.19/0.53 group of dimeric inhibitors. Inhibitor II has an N-terminal sequence which is identical to that of the previously described 0.28 monomeric inhibitor, but differs from it in that in addition to being active against -amylase from Tenebrio molitor, it is also active against mammalian salivary and pancreatic -amylases. Compensating nulli-tetrasomic and ditelosomic lines of wheat cv. Chinese Spring have been analysed by two-dimensional electrophoresis, under conditions in which there is no overlap of the inhibitors with other proteins, and the chromosomal locations of the genes encoding these inhibitors have been established: genes for Inh. I and Inh. III are in the short arms of chromosomes 3B and 3D, respectively, and that for Inh. II in the short arm of chromosome 6D.  相似文献   

15.
A new gene encoding an -amylase has been cloned, sequenced and expressed in E. coli from an alkaliphilic Pseudomonas sp. KFCC10818. The structural gene is 1356 base pairs long and encodes a protein of 452 amino acids. The recombinant -amylase has been purified and biochemically characterized. Molecular mass of the protein deduced from SDS-PAGE was 50 kDa. The enzyme showed an activity optimum at pH 8 and at 40 °C with complete stability at pH 13 for 3 h. The enzyme released maltose and maltotriose on hydrolysis of soluble starch. Amylose was hydrolysed over 5 times faster than amylopectin by the enzyme while the hydrolysis of cyclodextrin or pullulan was negligible.  相似文献   

16.
Bacillus subtilis CK-2, isolated from garden organic waste compost, was found to have high hydrolytic activity against carboxymethylcellulose (CMC) due to the secretion of an endo--1,4-glucanase. Enzyme production was related to the sporulation process, and was regulated by the concentration of readily metabolizable carbohydrate in growth medium. Enzyme production did not require CMC or other cellulose containing materials. The endo--1,4-glucanase activity was optimal at pH 5.6–5.8 and at 65 MoC, and achieved thermal stability up to 55 MoC. The activity was inhibited by Hg2+. The purified enzyme gave a single band corresponding to a MW of 35.5 kDa on SDS-PAGE, while the Sephadex G-75 chromatography revealed a molecular weight of the active enzyme around 70 kDa, indicating a dimeric form of the active enzyme. The enzyme activity was irreversibly inhibited by SDS. Native PAGE and IEF revealed three different isoelectric forms of the enzyme, all with an identical N-terminal amino-acid sequence.Abbreviations CMC carboxymethylcellulose - DNS dinitrosalicylic - SDS sodium dodecyl sulfate  相似文献   

17.
Summary We have isolated a novel gene, denoted USP, from Vicia faba var. minor, which corresponds to the most abundant mRNA present in cotyledons during early seed development; however, the corresponding protein does not accumulate in cotyledons. The characterized USP gene with its two introns is 1 of about 15 members of a gene family. A fragment comprising 637 bp of 5 flanking sequence and the total 5 untranslated region was shown to be sufficient to drive the mainly seed-specific expression of two reporter genes, coding for neomycin phosphotransferase 11 and -glucuronidase, in transgenic Arabidopsis thaliana and Nicotiana tabacum plants. We showed that the USP promoter becomes active in transgenic tobacco seeds in both the embryo and the endosperm, whereas its activity in Arabidopsis is detectable only in the embryo. Moreover, we demonstrated a transient activity pattern of the USP promoter in root tips of both transgenic host species.  相似文献   

18.
A mutant Had nl was induced in Drosophila melanogaster and found to be deficient in -hydroxy acid dehydrogenase. This mutation was utilized to study the genetics and physiological expression of Had +. Had+ was mapped to the X chromosome at 54.4 and seems to be the structural gene for the enzyme. Enzyme activity in male and female flies indicates that the gene shows both dosage compensation independent from dose effect and differential activity during ontogeny. Electrophoretic mobility data indicate that the enzyme is a dimer which forms by random association of subunits. The fact that the mutant shows no detrimental effect implies that the enzyme is dispensable, at least under laboratory conditions. The biological and technical implications of this gene-enzyme system are discussed.This research was sponsored by the Energy Research and Development Administration under contract with the Union Carbide Corporation. J. E. T. was a postdoctoral investigator supported by USPHS Fellowship No. 1-F02-GM53673-01 during a portion of this work.  相似文献   

19.
The N-terminal -amino groups of 1-bungarotoxin (1-Bgt) fromBungarus multicinctus venom were modified with trinitrobenzene sulfonic acid and the modified derivative was separated by high performance liquid chromatography. The trinitrophenylated (TNP) derivative contained two TNP groups at the -amino groups of A chain and B chain and showed a marked decrease in enzymatic activity. Methionine residues at positions 6 and 8 of the A chain were oxidized with chloramine T or cleaved with cyanogen bromide to remove the N-terminal octapeptide. Oxidation of methionine residues and removal of the N-terminal octapeptide caused a precipitous decrease in enzymatic activity, whereas antigenicity remained unchanged. The presence of dihexanoyllecithin influenced the interaction between 1-Bgt and 8-antilinonaphthalene sulfonate (ANS) and revealed that 1-Bgt consists of two types of ANS-binding sites, one at the substrate binding site of the A chain and the other might be at the B chain. The modified derivatives still retained their affinity for Ca2+ and ANS, indicating that the N-terminal region is not involved in Ca2+ and substrate binding. A fluorescence study revealed that the -amino group of the A chain was in the vicinity of substrate binding site and that the TNP -amino groups were in proximity to Trp-19 of the A chain. In addition, the study showed that the N-terminal region is important for stabilizing the architectural environment of Trp-19. The results, together with the proposal that Trp-19 of the A chain is involved in substrate binding, suggest that the N-terminal region of the A chain plays a crucial role in maintaining a functional active site for 1-Bgt.  相似文献   

20.
Cystathionine -lyase, the second enzyme involved in the methionine biosynthetic pathway in plants, catalyses the synthesis of homocysteine from cystathionine. A cDNA encoding cystathionine -lyase was cloned from an Arabidopsis thaliana expression library by complementation of an Escherichia coli mutant deficient in this enzyme. As deduced from the full-length nucleotide sequence (1.7 kb), the polypeptide contains 464 amino acids and presents a predicted M r of 50372. A. thaliana cystathionine -lyase exhibits 22% sequence identity with the E. coli corresponding enzyme and contains a 70 amino acid N-terminal additional sequence compared with the bacterial protein. Since the general features of chloroplast transit peptides could be observed in this amino-terminal extension, we propose a chloroplast localization for the cDNA-encoded enzyme. Southern blot analysis suggested that cystathionine -lyase is encoded by a single copy gene in A. thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号