首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Structure and assembly of the bacterial endospore coat   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
Pulmonary surfactant is an essential lipid–protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air–liquid interface to stabilise the lungs against physical forces operating along the compression–expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

4.
5.
Many important questions remain to be answered about the mechanism that mediates coupled Na,K,Cl cotransport. We still do not know what the ATP requirement involves. Is ATP the direct energy source? Such an energy source does not seem to be necessary, inasmuch as the net free energy in the combined transmembrane chemical gradients of Na, K, and Cl is quite sufficient to maintain the observed high Cl(i). Could a protein kinase-mediated mechanism be responsible for the ATP requirement? How does reducing Cl(i) stimulate the transporter? What are the kinetic relationships for the co-ions at the outward- and inward-facing transport sites? Are they symmetrical? Can the squid axon regulate its cell volume? If so, is the Na,K,Cl transporter directly involved? Thus, the squid axon remains a fruitful preparation to study a transport mechanism similar to that found in a variety of cells. Its large size confers unique experimental advantages that should help us in our quest to understand this widely distributed transport mechanism.  相似文献   

6.
7.
The acquisition of intracellular organelles, including mitochondria and plastids and a membrane-bounded nucleus, have been postulated to be key events in the development of the eukaryotic from the prokaryotic ancestral cell. The two major hypotheses to account for such acquisitions are: (1) primitive cells originally obtained organelles by engulfing free-living prokaryotes which then entered into symbiotic association (“endosymbiosis”) with them; (2) organelles arose through the engulfment by the primitive cell of part of its own cytoplasm. To some extent, the former hypothesis has received most support, because endosymbiosis is known to occur in extant organisms, whilst the latter hypothesis has received less support, because cytoplasmic engulfment by prokaryotes is not now thought to occur. However, during the process of endospore formation by extant bacteria, the protoplast within the single cell is observed to divide in a unique manner such that the cell in effect engulfs a portion of its own cytoplasm. The process is strikingly similar to the engulfment suggested by the second hypothesis to have initiated the evolution of eukaryotes. The engulfed cytoplasm is bounded by a double membrane within the “mother cell” and contains enzymes, ribosomes and a complete genome. In many respects this parallels the supposed primitive eukaryotic state and, it is argued, confers potential advantages on the cell, particularly through the control that the “mother cell” can exert on the enclosed compartment. It is hypothesized that bacterial endospore formation is therefore one product of evolution from an early engulfment event that led also to the development of complex eukaryotic cells.  相似文献   

8.
Rhizosphere: biophysics, biogeochemistry and ecological relevance   总被引:10,自引:0,他引:10  
Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O2 and CO2, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.  相似文献   

9.
10.
11.
Recently solved outer membrane protein structures include the smallest and largest known beta-barrel structures, with functions distinct from the general and specific porins. Both protein expressed in outer membranes and protein deposited as cytoplasmic aggregates have been used for the structure determinations. As most beta-barrel proteins can be overexpressed in an aggregated form (inclusion bodies) and refolded to the native state, this provides an alternative to membrane-targeted expression strategies and yields sufficient quantities of protein for future structural studies.  相似文献   

12.
13.
The cellular location of cytochrome c4 in Pseudomonas stutzeri and Azotobacter vinelandii was investigated by the production of spheroplasts. Soluble cytochrome c4 was found to be located in the periplasm in both organisms. The remaining cytochrome c4 was membrane-bound. The orientation of this membrane-bound cytochrome c4 fraction was investigated by proteolysis of the cytochrome on intact spheroplasts. In P. stutzeri, 78% of the membrane-bound cytochrome c4 could be proteolysed, whilst 82% of the spheroplasts remained intact, suggesting that the membrane-bound cytochrome c4 is on the periplasmic face of the membrane in this organism. Cytochrome c4 was not susceptible to proteolysis on A. vinelandii spheroplasts, in spite of being digestible in the purified state. Cytochrome c5 was shown to have a similar cellular distribution to cytochrome c4. Selective removal of cytochrome c4 from membranes of P. stutzeri was accomplished by the use of sodium iodide and propan-2-ol, with the retention of most of the ascorbate-TMPD (NNN'N'-tetramethylbenzene-1,4-diamine) oxidase activity associated with the membrane. Sodium iodide removed most of the cytochrome c4 from A. vinelandii membranes with retention of 62% of the ascorbate-TMPD oxidase activity. Cytochrome c4 could be returned to the washed membranes, but with no recovery of this enzyme activity. We conclude that cytochrome c4 is not involved in the ascorbate-TMPD oxidase activity associated with the membranes of these two organisms.  相似文献   

14.
Cellular and bacterial toxicities of topical antimicrobials   总被引:2,自引:0,他引:2  
Cellular and bacterial toxicities of four commonly used topical antimicrobials (1% povidone-iodine, 3% hydrogen peroxide, 0.25% acetic acid, and 0.5% sodium hypochlorite) were assayed in vitro using cultures of human fibroblasts and Staphylococcus aureus. All agents tested at full strength killed 100 percent of exposed fibroblasts. Fibroblast toxicity exceeded bacterial toxicity with serial dilutions of hydrogen peroxide and acetic acid. Dilutions of povidone-iodine (1:1000) and sodium hypochlorite (1:100) were identified where no fibroblast toxicity occurred while full bactericidal activity persisted.  相似文献   

15.
Aggregation of alpha-synuclein, an abundant and conserved pre-synaptic brain protein, is implicated as a critical factor in several neurodegenerative diseases. These diseases, known as synucleinopathies, include Parkinson's disease, dementia with Lewy bodies (LBs), diffuse LB disease, the LB variant of Alzheimer's disease, multiple system atrophy, and neurodegeneration with brain iron accumulation type I. Although the precise nature of in vivoalpha-synuclein function remains elusive, considerable knowledge has been accumulated about its structural properties and conformational behavior. alpha-Synuclein is a typical natively unfolded protein. It is characterized by the lack of rigid, well-defined, 3-D structure and possesses remarkable conformational plasticity. The structure of this protein depends dramatically on its environment and it accommodates a number of unrelated conformations. This paper provides an overview of the biochemistry, biophysics, and neuropathology of alpha-synuclein aggregation.  相似文献   

16.
17.
18.
Porin from bacterial and mitochondrial outer membranes   总被引:24,自引:0,他引:24  
The outer membrane of gram-negative bacteria acts as a molecular filter with defined exclusion limit for hydrophilic substances. The exclusion limit is dependent on the type of bacteria and has for enteric bacteria like Escherichia coli and Salmonella typhimurium a value between 600 and 800 Daltons, whereas molecules with molecular weights up to 6000 can penetrate the outer membrane of Pseudomonas aeruginosa. The molecular sieving properties result from the presence of a class of major proteins called porins which form trimers of identical subunits in the outer membrane. The porin trimers most likely contain only one large but well-defined pore with a diameter between 1.2 and 2 nm. Mitochondria are presumably descendents of gram-negative bacteria. The outer membrane of mitochondria contains in agreement with this hypothesis large pores which are permeable for hydrophilic substances with molecular weights up to 6000. The mitochondrial porins are processed by the cell and have molecular weights around 30,000 Daltons. There exists some evidence that the pore is controlled by electric fields and metabolic processes.  相似文献   

19.
By varying the molecular charge, shape and amphiphilicity of a series of conformationally distinct diarylureas it is possible to control the levels of phospholipid membrane lysis using membranes composed of bacterial lipid extracts. From the data obtained, it appears as though the lysis activity observed is not due to charge, conformation or amphiphilicity in isolation, but that surface aggregation, H-bonding and other factors may also play a part. The work provides evidence that this class of foldamer possesses potential for optimisation into new antibacterial agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号