首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We found that human neutrophils undergo homotypic aggregation by loading the physiological range of fluid shear stress (12–30 dynes/cm2). Under the fluid shear stress, an increase of intracellular Ca2+ concentration of neutrophils was observed. This increase of intracellular Ca2+ concentration was caused by Ca2+ influx, and the blockage of the flux by NiCl2 suppressed the neutrophil homotypic aggregation. Furthermore, this neutrophil aggregation under fluid shear stress was completely inhibited by pretreatment with antibody against LFA-1 or ICAM-3. These results suggested that NiCl2-sensitive Ca2+ channel played an important role in LFA-1/ICAM-3-mediated neutrophil homotypic aggregation under fluid shear stress. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Aggregation and the activation of the granulocyte (PMN) superoxide (O2-) generating system occur when certain stimuli are added to resting cells. It had previously been postulated that PMN aggregation is essential for maximal O2- production. This study was undertaken to test the hypothesis that PMN aggregation is required for full expression of PMN O2- production. We examined aggregation and O2- production induced by four stimuli; concanavalin A (Con A), phorbol myristate acetate (PMA), N-formylmethionyl-leucyl-phenylalanine (FMLP), and ionophore A23187. Cytochalasin B enhanced aggregation by all four stimuli but only enhanced the rate of O2- production by Con A; 2-deoxyglucose inhibited aggregation by all stimuli. Dissociation of PMN aggregation and O2- production was achieved by using NEM, TPCK, and divalent cations. NEM and TPCK prevent Con A-induced O2- production but have no effect on Con A-induced aggregation. PMA-stimulated PMN generate O2- in the presence or absence of Ca++ and Mg++. In contrast, PMA stimulated maximum PMN aggregation only in the presence of both Ca++ and Mg++. Thus PMN can generate O2- without aggregating, and PMN can aggregate without producing O2-. PMN from patients with chronic granulomatous disease do not generate O2- or undergo membrane potential depolarization in response to PMA. These PMN aggregated when stimulated with PMA, providing evidence that depolarization is not required for PMN aggregation. We conclude that aggregation and the activation of the O2- generating system, though temporally related, are not necessarily causally related.  相似文献   

3.
The interfacial sequence DKWASLWNWFNITNWLWYIK, preceding the transmembrane anchor of gp41 glycoprotein subunit, has been shown to be essential for fusion activity and incorporation into virions. HIV(c), a peptide representing this region, formed lytic pores in liposomes composed of the main lipids occurring in the human immunodeficiency virus, type 1 (HIV-1), envelope, i.e. 1-palmitoyl-2-oleoylphosphatidylcholine (POPC):sphingomyelin (SPM):cholesterol (Chol) (1:1:1 mole ratio), at low (>1:10,000) peptide-to-lipid mole ratio, and promoted the mixing of vesicular lipids at >1:1000 peptide-to-lipid mole ratios. Inclusion of SPM or Chol in POPC membranes had different effects. Whereas SPM sustained pore formation, Chol promoted fusion activity. Even if partitioning into membranes was not affected in the absence of both SPM and Chol, HIV(c) had virtually no effect on POPC vesicles. Conditions described to disturb occurrence of lateral separation of phases in these systems reproduced the high peptide-dose requirements for leakage as found in pure POPC vesicles and inhibited fusion. Surface aggregation assays using rhodamine-labeled peptides demonstrated that SPM and Chol promoted HIV(c) self-aggregation in membranes. Employing head-group fluorescent phospholipid analogs in planar supported lipid layers, we were able to discern HIV(c) clusters associated to ordered domains. Our results support the notion that the pretransmembrane sequence may participate in the clustering of gp41 monomers within the HIV-1 envelope, and in bilayer architecture destabilization at the loci of fusion.  相似文献   

4.
PSD-95 is a major scaffolding protein of the postsynaptic density, tethering NMDA- and AMPA-type glutamate receptors to signaling proteins and the neuronal cytoskeleton. Here we show that PSD-95 is regulated by the ubiquitin-proteasome pathway. PSD-95 interacts with and is ubiquitinated by the E3 ligase Mdm2. In response to NMDA receptor activation, PSD-95 is ubiquitinated and rapidly removed from synaptic sites by proteasome-dependent degradation. Mutations that block PSD-95 ubiquitination prevent NMDA-induced AMPA receptor endocytosis. Likewise, proteasome inhibitors prevent NMDA-induced AMPA receptor internalization and synaptically induced long-term depression. This is consistent with the notion that PSD-95 levels are an important determinant of AMPA receptor number at the synapse. These data suggest that ubiquitination of PSD-95 through an Mdm2-mediated pathway is critical in regulating AMPA receptor surface expression during synaptic plasticity.  相似文献   

5.
Recent evidence has been presented that expression of lipogenic genes is downregulated in adipose tissue of ob/ob mice as well as in human obesity, suggesting a functionally lipoatrophic state. Using (2)H(2)O labeling, we measured three adipose tissue biosynthetic processes concurrently: triglyceride (TG) synthesis, palmitate de novo lipogenesis (DNL), and cell proliferation (adipogenesis). To determine the effect of the ob/ob mutation (leptin deficiency) on these parameters, adipose dynamics were compared in ob/ob, leptin-treated ob/ob, food-restricted ob/ob, and lean control mice. Adipose tissue fluxes for TG synthesis, de novo lipogenesis (DNL), and adipogenesis were dramatically increased in ob/ob mice compared with lean controls. Low-dose leptin treatment (2 microg/day) via miniosmotic pump suppressed all fluxes to control levels or below. Food restriction in ob/ob mice only modestly reduced DNL, with no change in TG synthesis or adipogenesis. Measurement of mRNA levels in age-matched ob/ob mice showed generally normal expression levels for most of the selected lipid anabolic genes, and leptin treatment had, with few exceptions, only modest effects on their expression. We conclude that leptin deficiency per se results in marked elevations in flux through diverse lipid anabolic pathways in adipose tissue (DNL, TG synthesis, and cell proliferation), independent of food intake, but that gene expression fails to reflect these changes in flux.  相似文献   

6.
We have addressed complex formation between the death domain (DD) of the death receptor CD95 (Fas/APO-1) with the DD of immediate adaptor protein FADD using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and size-exclusion chromatography with in-line light scattering. We find complexation to be independent of the C-terminal 12 residues of CD95 and insensitive to mutation of residues that engage in the high-order clustering of CD95-DD molecules in a recently reported crystal structure obtained at pH 4. Differential NMR linewidths indicate that the C-terminal region of the CD95 chains remains in a disordered state and (13)C-methyl TROSY data are consistent with a lack of high degree of symmetry for the complex. The overall molecular mass of the complex is inconsistent with that in the crystal structure, and the complex dissociates at pH 4. We discuss these findings using sequence analysis of CD95 orthologs and the effect of FADD mutations on the interaction with CD95.  相似文献   

7.
Hsiao CC  Chen HY  Chang GW  Lin HH 《FEBS letters》2011,585(2):313-318
Most adhesion-class G protein-coupled receptors (adhesion-GPCRs) undergo a novel self-catalytic cleavage at the GPCR proteolysis site (GPS) to form a hetero-dimeric complex containing the extracellular and seven-span transmembrane subunits. However, little is known about the role of GPS auto-proteolysis in the function of adhesion-GPCRs. Here we show that GPS cleavage is essential for the homotypic cell aggregation promoted by CD97 receptor, a leukocyte-restricted adhesion-GPCR often aberrantly expressed in carcinomas. We find that CD97 does not mediate cell aggregation directly. Instead, expression of the wild type – but not the GPS cleavage-deficient CD97 up-regulates the expression of N-cadherin, leading to Ca++-dependent cell–cell aggregation. Our results provide a clear evidence for the role of GPS proteolytic modification in the cellular function of adhesion-GPCRs.  相似文献   

8.
CD47, a cell surface glycoprotein, plays an important role in modulating neutrophil (PMN) migration across endothelial and epithelial monolayers. Here we show that anti-CD47 monoclonal antibodies (mAbs) delay PMN migration across collagen-coated filters or T84 epithelial monolayers toward the chemoattractant formylmethionylleucylphenylalanine (fMLP). Despite delayed transmigration by anti-CD47 mAbs, the numbers of PMN migrating across in either condition were the same as in the presence of control non-inhibitory mAbs. Cell surface labeling and immunoprecipitation demonstrated upregulation of CD47 to the PMN cell surface with kinetics similar to those of the transmigration response. Subcellular fractionation studies revealed redistribution of CD47 from intracellular compartments that co-sediment with secondary granules to plasma membrane-containing fractions after fMLP stimulation. Experiments performed to investigate potential signaling pathways revealed that inhibition of tyrosine phosphorylation with genistein reversed the anti-CD47-mediated PMN migration delay, whereas inhibition of phosphatidylinositol 3-kinase only partially reversed anti-CD47 effects that correlated with a rapid increase in PMN cell surface CD47. Analysis of the contribution of epithelial-expressed CD47 to PMN transmigration revealed that PMN migration across CD47-deficient epithelial monolayers (CaCO2) was significantly increased after stable transfection with CD47. These results suggest that cell surface CD47 and downstream tyrosine phosphorylation signaling events regulate, in part, the rate of PMN migration during the inflammatory response.  相似文献   

9.
Dissociation and aggregation of calpain in the presence of calcium   总被引:5,自引:0,他引:5  
Calpain is a heterodimeric Ca(2+)-dependent cysteine protease consisting of a large (80 kDa) catalytic subunit and a small (28 kDa) regulatory subunit. The effects of Ca(2+) on the enzyme include activation, aggregation, and autolysis. They may also include subunit dissociation, which has been the subject of some debate. Using the inactive C105S-80k/21k form of calpain to eliminate autolysis, we have studied its disassociation and aggregation in the presence of Ca(2+) and the inhibition of its aggregation by means of crystallization, light scattering, and sedimentation. Aggregation, as assessed by light scattering, depended on the ionic strength and pH of the buffer, on the Ca(2+) concentration, and on the presence or absence of calpastatin. At low ionic strength, calpain aggregated rapidly in the presence of Ca(2+), but this was fully reversible by EDTA. With Ca(2+) in 0.2 m NaCl, no aggregation was visible but ultracentrifugation showed that a mixture of soluble high molecular weight complexes was present. Calpastatin prevented aggregation, leading instead to the formation of a calpastatin-calpain complex. Crystallization in the presence of Ca(2+) gave rise to crystals mixed with an amorphous precipitate. The crystals contained only the small subunit, thereby demonstrating subunit dissociation, and the precipitate was highly enriched in the large subunit. Reversible dissociation in the presence of Ca(2+) was also unequivocally demonstrated by the exchange of slightly different small subunits between mu-calpain and m-calpain. We conclude that subunit dissociation is a dynamic process and is not complete in most buffer conditions unless driven by factors such as crystal formation or autolysis of active enzymes. Exposure of the hydrophobic dimerization surface following subunit dissociation may be the main factor responsible for Ca(2+)-induced aggregation of calpain. It is likely that dissociation serves as an early step in calpain activation by releasing the constraints upon protease domain I.  相似文献   

10.
As shown by earlier experiments high hydrostatic pressure affects the catalytic function of lactic dehydrogenase from rabbit muscle. In the presence of substrates denaturation occurs, whereas in the absence of substrates and --SH-protecting reagents oxidation of sulfhydryl groups takes place [Schmid, G., Lüdemann, H.-D. & Jaenicke, R. (1975) Biophys. Chem. 3, 90--98; (1978) Eur. J. Biochem. 86, 219--224]. Avoiding oxidation effects by reducing conditions in the solvent medium and by chelation of heavy metal ions, the remaining high-pressure effects consist of dissociation of the native quaternary structure into subunits followed by aggregation. Both reactions are influenced by temperature and enzyme concentration. Short incubation (less than or equal to 10 min) at pH 6.0--8.5 and pressures of 0.3--1.0 kbar causes dissociation which is reversed at normal pressure. At 5 degrees C the activation volume is found to be delta V not equal to = -62 +/- 3cm3 . mol-1. Above 1.2 kbar irreversible aggregation takes place; the reaction is favoured by low temperature and decreased pH. The activation volume for the aggregation process at 5 degress C is delta V not equal to = -97 +/- 3cm3 . mol-1. The results may be described by a reaction sequence comprisign pressure-induced dissociation of the native enzyme into its subunits followed by subunit aggregation to form inactive high-molecular-weight particles.  相似文献   

11.
Bats C  Groc L  Choquet D 《Neuron》2007,53(5):719-734
Accumulation of AMPA receptors at synapses is a fundamental feature of glutamatergic synaptic transmission. Stargazin, a member of the TARP family, is an AMPAR auxiliary subunit allowing interaction of the receptor with scaffold proteins of the postsynaptic density, such as PSD-95. How PSD-95 and Stargazin regulate AMPAR number in synaptic membranes remains elusive. We show, using single quantum dot and FRAP imaging in live hippocampal neurons, that exchange of AMPAR by lateral diffusion between extrasynaptic and synaptic sites mostly depends on the interaction of Stargazin with PSD-95 and not upon the GluR2 AMPAR subunit C terminus. Disruption of interactions between Stargazin and PSD-95 strongly increases AMPAR surface diffusion, preventing AMPAR accumulation at postsynaptic sites. Furthermore, AMPARs and Stargazin diffuse as complexes in and out synapses. These results propose a model in which the Stargazin-PSD-95 interaction plays a key role to trap and transiently stabilize diffusing AMPARs in the postsynaptic density.  相似文献   

12.
Intestinal epithelial cells (IEC) play an immunoregulatory role in the intestine. This role involves cell-cell interactions with intraepithelial lymphocytes that may also play a role in some enteropathies. The discovery of the RGD motif-containing Protein ADAM-15 (a disintegrin and metalloprotease-15) raises the question of its involvement in these cell-cell interactions. Cell adhesion assays were performed using the Jurkat E6.1 T cell line as a model of T lymphocytes and Caco2-BBE monolayers as a model of intestinal epithelia. Our results show that an anti-ADAM-15 ectodomain antibody inhibited the attachment of Jurkat cells on Caco2-BBE monolayers. Overexpression of ADAM-15 in Caco2-BBE cells enhanced Jurkat cell binding, and overexpression of ADAM-15 in Jurkat cells enhanced their aggregation. Mutagenesis experiments showed that both the mutation of ADAM-15 RGD domain or the deletion of its cytoplasmic tail decreased these cell-cell interactions. Moreover, wound-healing experiments showed that epithelial ADAM-15-mediated Jurkat cell adhesion to Caco2-BBE cells enhances the mechanisms of wound repair. We also found that ADAM-15-mediated aggregation of Jurkat cells increases the expression of tumor necrosis factor-alpha mRNA. These results demonstrate the following: 1) ADAM-15 is involved in heterotypic adhesion of intraepithelial lymphocytes to IEC as well as in homotypic aggregation of T cells; 2) both the RGD motif and the cytoplasmic tail of ADAM-15 are involved for these cell-cell interactions; and 3) ADAM-15-mediated cell-cell interactions are involved in mechanisms of epithelial restitution and production of pro-inflammatory mediators. Altogether these findings point to ADAM-15 as a possible therapeutic target for prevention of inappropriate T cell activation involved in some pathologies.  相似文献   

13.
Fluorescence microscopy has been used to study the cell surface distribution of the complement receptor for C3bi (CR3) on human neutrophils during locomotion. CR3 is an integral membrane protein that participates in cell attachment phenomena including chemotaxis. Fluorescein- and rhodamine-conjugated monoclonal IgG or Fab fragments were used to label CR3. We have previously shown that CR3 is uniformly distributed on unstimulated cells. During cell locomotion the fluorescent labels redistribute to the uropod and retraction fibers. To better understand the role of CR3 in chemotaxis, we have performed sequential two-color labeling experiments in conjunction with fluorescence microscopy. Double-labeling experiments were conducted by labeling adherent neutrophils with fluorescein-conjugated anti-CR3 followed by chemotaxis in a gradient of FMLP (10(-7) M). The cells were then labeled again with rhodamine-conjugated anti-CR3. The uropod and distal training filopodia were labeled with fluorescein, whereas the cell body and occasionally proximal filopodia near the uropod were labeled with rhodamine. When neutrophils were fixed and permeabilized prior to the second CR3 labeling, the second fluorescent label was localized to a granule-like compartment(s), often near the lamellipodium. The results suggest a flow of CR3 from intracellular granules----lamellipodia and cell body----uropod----trailing filopodia during chemotaxis.  相似文献   

14.
Appropriate trafficking and targeting of glutamate receptors (GluRs) to the postsynaptic density is crucial for synaptic function. We show that mPins (mammalian homologue of Drosophila melanogaster partner of inscuteable) interacts with SAP102 and PSD-95 (two PDZ proteins present in neurons), and functions in the formation of the NMDAR-MAGUK (N-methyl-D-aspartate receptor-membrane-associated guanylate kinase) complex. mPins enhances trafficking of SAP102 and NMDARs to the plasma membrane in neurons. Expression of dominant-negative constructs and short-interfering RNA (siRNA)-mediated knockdown of mPins decreases SAP102 in dendrites and modifies surface expression of NMDARs. mPins changes the number and morphology of dendritic spines and these effects depend on its Galphai interaction domain, thus implicating G-protein signalling in the regulation of postsynaptic structure and trafficking of GluRs.  相似文献   

15.
An experimental approach is described that enables the analysis of interactions between exogenous surface ligands and components of the cytoplasm in neutrophil leukocytes. Neutrophils treated with the nonionic detergent Lubrol PX, under controlled conditions, yield intact detergent-insoluble ghosts. Morphological analysis of neutrophil ghosts shows that they retain the original dimensions of the cell and consist almost entirely of a peripheral filamentous network, representing the submembranous cortical web, concentric to nuclear remnants. All intracellular membrane-bounded organelles, plasma membrane, and background cytoplasmic electron density are absent. Biochemical analysis of the ghosts shows that less than 10% of enzyme markers for the soluble and granule fractions remain, and that greater than 90% of total cell phospholipid is removed during detergent extraction. The major proteins remaining in the ghosts comigrate, on polyacrylamide gels in the presence of SDS, with chicken gizzard actin, myosin, filamin, and a 110-kdalton protein. Patches and caps induced on neutrophils with either fluorescein isothiocyanate-concanavalin A or ferritin-concanavalin A retain their original location and morphology on ghosts after lysis, as determined by both fluorescence and electron microscopy. In similar experiments, but using 125I-labeled lectins, 37% of total cell bound concanavalin A (Con A) and 25% succinylated Con A remain attached to the ghosts. A major 125I-labeled membrane glycoprotein (80 kdaltons) is associated with ghosts prepared from intact neutrophils iodinated in the presence of exogenous lactoperoxidase. Further 125I-labeled membrane glycoproteins (217, 170, and 147 kdaltons) become associated with ghosts prepared from iodinated cells treated before lysis with Con A, but not with succinylated Con A. These data taken together suggest that linkages exist in neutrophils between proteins exposed on the outer surface of the plasma membrane and the peripheral filamentous network independent of the presence of lipid bilayer. The implications of these findings for surface motile phenomena will be discussed.  相似文献   

16.
The cell membrane lies at the interface between an extracellular set of signals and the appropriate intracellular response. Specifically, lymphocyte activity is determined by the spatial and structural response to antigens, as mediated by cell surface receptors. In order to correlate experimentally observed cellular activities, such as secretion, anergy, death, survival and division to external stimuli, it is necessary to monitor cell surface dynamics. B-lymphocyte activation results from the stimulation by large immune complexes comprising antigens, B-cell receptors (BcRs) and co-receptors. Compartmentalisation of the interacting molecular components is required in order to assure the rapid initiation of specialised and sustained signalling cascades. In this study, a Monte Carlo simulation of the cell membrane dynamics was developed to clarify the receptor dynamics, aggregation mechanisms and their combined effect on cellular functions. This simulation is based on experimentally measured parameters and represents a feasible, advanced and reliable framework to investigate the cell surface. The current study focussed on B-cell surface dynamics. A model demonstrating the basic properties of BcR dynamics and how BcR kinetics is affected by lipid rafts is developed. The authors studied BcR interactions with multivalent ligands and the influence of lipid rafts on this interaction. Finally, the dynamics of the initial steps of BcR-mediated cell activation is estimated and the effect of the association of signalling molecules with lipid rafts is demonstrated. These results are used to suggest some novel hypotheses on BcR-mediated B-cell activation.  相似文献   

17.
To address the question whether leukocyte integrins are able to generate signals activating neutrophil functions, we investigated the capability of mAbs against the common beta chain (CD18), or the distinct alpha chains of CR3, LFA-1, or gp150/95, to activate neutrophil respiratory burst. These investigations were performed with mAbs bound to protein A immobilized to tissue culture polystyrene. Neutrophils plated in wells coated with the anti-CD18 mAbs IB4 and 60.3 released H2O2; H2O2 release did not occur when neutrophils were plated in wells coated with an irrelevant, isotype-matched mAb (OKDR), or with mAbs against other molecules (CD16, beta 2-microglobulin) expressed on the neutrophil surface at the same density of CD18. Four different mAbs, OKM1, OKM9, OKM10, 60.1, which recognize distinct epitopes of CR3 were unable to trigger H2O2 or O2- release from neutrophils. However, mAbs against LFA-1 or gp150/95 triggered both H2O2 and O2- release from neutrophils. Stimulation of neutrophils respiratory burst by both anti-CD18, and anti-LFA-1 or gp150/95 mAbs was totally inhibited by the microfilaments disrupting agent, cytochalasin B, and by a permeable cAMP analogue. While the capability to activate neutrophil respiratory burst was restricted to anti-LFA-1 and gp150/95 mAbs, we observed that mAbs against all members of leukocyte integrins, including CR3, were able to trigger neutrophil spreading. These findings indicate that, in neutrophils, all three leukocyte integrins can generate signals activating spreading, but only LFA-1 and gp150/95 can generate signals involved in activation of the respiratory burst. This observation can be relevant to understand the mechanisms responsible for the activation of neutrophil respiratory burst by tumor necrosis factor-alpha, which has been shown to be strictly dependent on expression of leukocyte integrins (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. Wright. 1989. J. Cell Biol. 109:13411349.  相似文献   

18.
We investigated whether serum growth hormone (GH) concentration changes in association with the rise in serum prolactin (PRL) concentration known to occur during the early morning hours in the pregnant rat. Animals were kept in a room with the lights on from 0500 to 1900 hours (hr) daily and decapitated for the collection of trunk blood at 2200 or 2400 hr on Day 6 of pregnancy or at 0200, 0400, 0800 or 1000 hr on Day 6 of pregnancy. Serum GH concentration rose more than 4-fold from low levels at 2200 and 2400 hr to higher levels at 0400 and 0800 hr and then declined by 1000 hr. Serum prolactin (PRL) concentration followed a similar pattern except that it returned to low levels earlier, by 0800 hr. Serum luteinizing hormone, follicle-stimulating hormone and thyroid-stimulating hormone concentrations showed no significant changes. Serum GH levels at 0800 hr in pregnant rats were higher than those observed in cyclic rats (13 time periods sampled). The results demonstrate that serum GH concentration is elevated during a circumscribed period in the 6- to 7-day pregnant rat. The time of onset of the rise is similar to that for serum PRL but the elevation in GH levels persists longer than that for PRL.  相似文献   

19.
Human neutrophils when exposed to appropriate stimuli aggregate, generate O(2) and secrete lysosomal constituents. To determine whether a causal relationship may exist between these responses neutrophils were exposed to either N-formyl-methionyl-leucyl-phenylalanine, phorbol myristate acetate, or the two calcium ionophores, A23187 and prostaglandin Bx. Each agent elicited all of the above responses. The concentrations required to elicit the aggregation of 30 . 10(6) neutrophils/ml were comparable to that required for O(2) generation or lysozyme release. In a series of experiments designed to dissociate these responses, cells were suspended in a concentration too dilute (3 . 10(6) neutrophils/ml) to permit aggregation to occur. O(2) generation and lysozyme release was measurable and varied in a dose-dependent fashion to the concentration of stimulus. In a second series of experiments, neutrophils were treated with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid to inhibit degranulation without affecting O(2) generation. Aggregation was inhibited in a parallel fashion with lysozyme release. When detectable O(2) was removed from the medium by superoxide dismutase and catalase, aggregation and lysozyme release unaffected showing that aggregation can not be due to the presence of O(2) or its products in the extracellular medium. Neither aggregation of resting cells nor augmentation of fMet-Leu-Phe-induced aggregation was observed when cells were exposed to either supernatants of degranulated neutrophils or constituents of specific granules (lysozyme, lactoferrin). Kinetic analysis showed that in the absence of cytochalasin B degranulation preceded aggregation, while in its presence aggregation preceded degranulation.  相似文献   

20.
Cell-cell adhesion is essential for the appropriate immune response, differentiation, and migration of lymphocytes. This important physiological event is reflected in vitro by homotypic cell aggregation. We have previously reported that a 120 kDa cell surface glycoprotein, JL1, is a unique protein specifically expressed by immature double positive (DP) human thymocytes which are in the process of positive and negative selections through the interaction between thymocyte and antigen-presenting cells (APCs). The function of the JL1 molecule, however, is yet to be identified. We show here that anti-JL1 monoclonal antibody (mAb) induced the homotypic aggregation of human thymocytes in a temperature- and Mg2+-dependent manner. It required an intact cytoskeleton and the interaction between leucocyte function associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) since it was blocked by cytochalasin B and D, and mAb against LFA-1 and ICAM-1 which are known to be involved in the aggregation of thymocytes. Translocation of phosphatidylserine (PtdSer) through the cell membrane was not detected, implying that the molecular mechanism of JL-1-induced homotypic aggregation is different from that of CD99-induced homotypic aggregation. In summary, JL1 is a cell surface molecule that induces homotypic adhesion mediated by the LFA-1 and ICAM-1 interaction and cytoskeletal reorganization. These findings suggest that JL1 may be an important regulator of thymocyte development and thymocyte-APC interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号