首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previous studies have demonstrated that polyunsaturated fatty acids (PUFAs) suppress sterol regulatory element-binding protein 1c (SREBP-1c) expression and, thus, lipogenesis. In the current study, the molecular mechanism for this suppressive effect was investigated with luciferase reporter gene assays using the SREBP-1c promoter in HEK293 cells. Consistent with previous data, the addition of PUFAs to the medium in the assays robustly inhibited the SREBP-1c promoter activity. Deletion and mutation of the two liver X receptor (LXR)-responsive elements (LXREs) in the SREBP-1c promoter region eliminated this suppressive effect, indicating that both LXREs are important PUFA-suppressive elements. The luciferase activities of both SREBP-1c promoter and LXRE enhancer constructs induced by co-expression of LXRalpha or -beta were strongly suppressed by the addition of various PUFAs (arachidonic acid > eicosapentaenoic acid > docosahexaenoic acid > linoleic acid), whereas saturated or mono-unsaturated fatty acids had minimal effects. Gel shift mobility and ligand binding domain activation assays demonstrated that PUFA suppression of SREBP-1c expression is mediated through its competition with LXR ligand in the activation of the ligand binding domain of LXR, thereby inhibiting binding of LXR/retinoid X receptor heterodimer to the LXREs in the SREBP-1c promoter. These data suggest that PUFAs could be deeply involved in nutritional regulation of cellular fatty acid levels by inhibiting an LXR-SREBP-1c system crucial for lipogenesis.  相似文献   

3.
4.
5.
6.
7.
On the role of liver X receptors in lipid accumulation in adipocytes   总被引:14,自引:0,他引:14  
The pivotal role of liver X receptors (LXRs) in the metabolic conversion of cholesterol to bile acids in mice is well established. More recently, the LXRalpha promoter has been shown to be under tight regulation by peroxisome proliferator-activated receptors (PPARs), implying a role for LXRalpha in mediating the interplay between cholesterol and fatty acid metabolism. We have studied the role of LXR in fat cells and demonstrate that LXR is regulated during adipogenesis and augments fat accumulation in mature adipocytes. LXRalpha expression in murine 3T3-L1 adipocytes as well as in human adipocytes was up-regulated in response to PPARgamma agonists. Administration of a PPARgamma agonist to obese Zucker rats also led to increased LXRalpha mRNA expression in adipose tissue in vivo. LXR agonist treatment of differentiating adipocytes led to increased lipid accumulation. An increase of the expression of the LXR target genes, sterol regulatory binding protein-1 and fatty acid synthase, was observed both in vivo and in vitro after treatment with LXR agonists for 24 h. Finally, we demonstrate that fat depots in LXRalpha/beta-deficient mice are smaller than in age-matched wild-type littermates. These findings imply a role for LXR in controlling lipid storage capacity in mature adipocytes and point to an intriguing physiological interplay between LXR and PPARgamma in controlling pathways in lipid handling.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Liver X receptor alpha (LXRalpha) is a member of the nuclear receptor superfamily that is activated by oxysterols, and plays a pivotal role in regulating the metabolism, transport and uptake of cholesterol. Here, we demonstrate that LXRalpha also regulates the low-density lipoprotein receptor (LDLR) gene, which mediates the endocytic uptake of LDL cholesterol in the liver. An LXR agonist induced the expression of LDLR in cultured hepatoblastoma cells. Moreover, the LDLR promoter contained an LXR response element that was recognized by LXRalpha/RXRalpha (retinoid X receptor alpha) heterodimers in hepatoblastoma cells. These results suggest a novel pathway whereby LXRalpha might modulate cholesterol metabolism.  相似文献   

15.
16.
17.
Human implantation involves invasion of the uterine wall and remodeling of uterine arteries by extravillous cytotrophoblasts. Defects in these early steps of placental development lead to poor placentation and are often associated with preeclampsia, a frequent complication of human pregnancy. One of the complex mechanisms controlling trophoblast invasion involves the activation of the liver X receptor beta (or NR1H2, more commonly known as LXRbeta) by oxysterols known as potent LXR activators. This activation of LXRbeta leads to a decrease of trophoblast invasion. The identification of new target genes of LXR in the placenta could aid in the understanding of their physiological roles in trophoblast invasion. In the present study, we show that the endoglin (ENG) gene is a direct target of the liver X receptor alpha (NR1H3, also known as LXRalpha). ENG, whose gene is highly expressed in syncytiotrophoblasts, is part of the transforming growth factor (TGF) receptor complex that binds several members of the TGFbeta superfamily. In the human placenta, ENG has been shown to be involved in the inhibition of trophoblast invasion. Treatment of human choriocarcinoma JAR cells with T0901317, a synthetic LXR-selective agonist, leads to a significant increase in ENG mRNA and protein levels. Using transfection and electrophoretic mobility shift assays, we demonstrate that LXR (as a heterodimer with the retinoid X receptor) is able to bind the ENG promoter on an LXR response element and mediates the activation of ENG gene expression by LXRalpha in JAR cells. This study suggests a novel mechanism by which LXR may regulate trophoblast invasion in pathological pregnancy such as preeclampsia.  相似文献   

18.
Dissection of the insulin-sensitizing effect of liver X receptor ligands   总被引:3,自引:0,他引:3  
The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Treatment of insulin-resistant mice with synthetic LXR ligands enhances glucose tolerance, inducing changes in gene expression expected to decrease hepatic gluconeogenesis (via indirect suppression of gluconeogenic enzymes) and increase peripheral glucose disposal (via direct up-regulation of glut4 in fat). To evaluate the relative contribution of each of these effects on whole-body insulin sensitivity, we performed hyperinsulinemic-euglycemic clamps in high-fat-fed insulin-resistant rats treated with an LXR agonist or a peroxisome proliferator-activated receptor gamma ligand. Both groups showed significant improvement in insulin action. Interestingly, rats treated with LXR ligand had lower body weight and smaller fat cells than controls. Insulin-stimulated suppression of the rate of glucose appearance (Ra) was pronounced in LXR-treated rats, but treatment failed to enhance peripheral glucose uptake (R'g), despite increased expression of glut4 in epididymal fat. To ascertain whether LXR ligands suppress hepatic gluconeogenesis directly, mice lacking LXRalpha (the primary isotype in liver) were treated with LXR ligand, and gluconeogenic gene expression was assessed. LXR activation decreased expression of gluconeogenic genes in wild-type and LXRbeta null mice, but failed to do so in animals lacking LXRalpha. Our observations indicate that despite inducing suggestive gene expression changes in adipose tissue in this model of diet-induced insulin resistance, the antidiabetic effect of LXR ligands is primarily due to effects in the liver that appear to require LXRalpha. These findings have important implications for clinical development of LXR agonists as insulin sensitizers.  相似文献   

19.
LXR is crucial in lipid metabolism   总被引:9,自引:0,他引:9  
Liver X receptors (LXRalpha and LXRbeta) are members of the nuclear receptor superfamily and are activated by oxysterols and intermediates in the cholesterol synthetic pathway. The pivotal role of LXRs in the metabolic conversion of cholesterol to bile acids is well established. Analysis of gene expression in LXRalpha and LXRbeta deficient mice have confirmed that LXR regulates a number of target genes involved in both cholesterol and fatty acid metabolism in liver, macrophages and intestine. The observation that LXRalpha is responsive to fatty acids and is expressed in metabolic tissues suggests that it also plays a general role in lipid metabolism. Adipose tissue is the main storage site for fat in the body and plays a crucial role in overall lipid handling. Both LXRalpha and LXRbeta are expressed and activated by endogenous and synthetic ligands, which lead to lipid accumulation into adipocytes. This indicates an important regulatory role of LXR in several metabolic signaling pathways in the adipose tissue, such as glucose uptake and de novo fatty acid synthesis. Here, we review recent studies that provide new insights into the mechanisms by which LXRs act to influence fatty acid synthesis in liver and adipose tissue.  相似文献   

20.
SIRT1 deacetylates and positively regulates the nuclear receptor LXR   总被引:4,自引:0,他引:4  
The NAD(+)-dependent deacetylase Sir2 regulates life span in lower eukaryotes. The mammalian ortholog SIRT1 regulates physiological processes including apoptosis, fat metabolism, glucose homeostasis, and neurodegeneration. Here we show that SIRT1 is a positive regulator of liver X receptor (LXR) proteins, nuclear receptors that function as cholesterol sensors and regulate whole-body cholesterol and lipid homeostasis. LXR acetylation is evident at a single conserved lysine (K432 in LXRalpha and K433 in LXRbeta) adjacent to the ligand-regulated activation domain AF2. SIRT1 interacts with LXR and promotes deacetylation and subsequent ubiquitination. Mutations of K432 eliminate activation of LXRalpha by this sirtuin. Loss of SIRT1 in vivo reduces expression of a variety of LXR targets involved in lipid metabolism, including ABCA1, an ATP-binding cassette (ABC) transporter that mediates an early step of HDL biogenesis. Our findings suggest that deacetylation of LXRs by SIRT1 may be a mechanism that affects atherosclerosis and other aging-associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号