首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously reported the isolation of Chinese hamster ovary cell mutants deficient in acylcoenzyme A/cholesterol acyltransferase (ACAT) activity (Cadigan, K. M., J. G. Heider, and T. Y. Chang. 1988, J. Biol. Chem. 263:274-282). We now describe a procedure for isolating cells from these mutants that have regained the ability to synthesize cholesterol esters. The protocol uses the fluorescent stain Nile red, which is specific for neutral lipids such as cholesterol ester. After ACAT mutant populations were subjected to chemical mutagenesis or transfected with human fibroblast whole genomic DNA, two revertants and one primary transformant were isolated by virtue of their higher fluorescent intensities using flow cytofluorimetry. Both the revertants and transformant have regained large amounts of intracellular cholesterol ester and ACAT activity. However, heat inactivation experiments revealed that the enzyme activity of the transformant had heat stability properties identical to that of human fibroblasts, while the ACAT activities of the revertants were similar to that of other Chinese hamster ovary cell lines. These results suggest that the molecular lesion in the ACAT mutants resides in the structural gene for the enzyme, and the transformant has corrected this defect by acquiring and stably expressing a human gene encoding the ACAT polypeptide. Secondary transformants were isolated by transfection of ACAT mutant cells with primary transformant genomic DNA. Genomic Southern analysis of the secondary transformants using a probe specific for human DNA revealed several distinct restriction fragments common to all the transformants which most likely comprise part or all of the human ACAT gene. The cell lines described here should facilitate the cloning of the gene encoding the human ACAT enzyme.  相似文献   

2.
Acyl coenzyme A:cholesterol acyl transferase and/or cholesterol esterase may regulate the esterification and absorption of exogenous cholesterol. To assess this, mucosal acyl coenzyme A:cholesterol acyl transferase activity was inhibited selectively with three different drugs [Sandoz #58-035, inhibitor 1; Lederle inhibitor 2 and inhibitor 3] and the effect upon the absorption of a [4-14C]cholesterol meal was studied in the lymph fistula rat. Compared to control rats, ACAT activity measured in mucosal homogenates from the drug-treated rats was reduced 80-90%, 40%, and 30%, respectively, during the predicted time-frame for maximum mucosal esterification of cholesterol (i.e., after cholesterol is fed and before it appears in lymph). In contrast, [14C]cholesterol absorption in the drug-treated animals was unchanged from controls [5.7 +/- 1.2 (inhibitor 1) vs. 5.4 +/- 1.6 mumol/6 hr (control); 6.1 +/- 2.1 (inhibitor 2) and 5.2 +/- 1.5 (inhibitor 3) vs. 4.1 +/- 1.3 mumol/6 hr (control)]. Of the absorbed [14C]cholesterol, approximately 75% was esterified in all groups. Cholesterol esterase activity measured in the drug-treated rats was unchanged compared to controls nor did the drugs inhibit this enzyme in vitro. Under the conditions of this study, drugs causing substantial inhibition of acyl coenzyme A:cholesterol acyl transferase activity had no effect on the absorption of exogenous cholesterol.  相似文献   

3.
A protocol has been developed for isolating cholesterol ester-deficient cells from the Chinese hamster ovary cell clone 25-RA. This cell line previously was shown to be partially resistant to suppression of cholesterogenic enzyme activities by 25-hydroxycholesterol and to accumulate a large amount of intracellular cholesterol ester when grown in medium containing 10% fetal calf serum (Chang, T. Y., and Limanek, J. S. (1980) J. Biol. Chem. 255, 7787-7795). The higher cholesterol ester content of 25-RA is due to an increase in the rate of cholesterol biosynthesis and low density lipoprotein receptor activity compared to wild-type Chinese hamster ovary cells, and not due to an abnormal acyl-CoA:cholesterol acyltransferase enzyme. The procedure to isolate cholesterol ester-deficient mutants utilizes amphotericin B, a polyene antibiotic known to bind to cholesterol and to form pore complexes in membranes. After incubation in cholesterol-free medium plus an inhibitor of endogenous cholesterol biosynthesis, 25-RA cells were found to be 50-500 times more sensitive to amphotericin B killing than were mutant cells containing reduced amounts of cholesterol ester. Twelve amphotericin B-resistant mutants were isolated which retained the 25-hydroxycholesterol-resistant phenotype. These mutants did not exhibit the perinuclear lipid droplets characteristic of 25-RA cells, and lipid analysis revealed a large (up to 40-fold) reduction in cellular cholesterol ester. The acyl-CoA:cholesterol acyltransferase activities of these cholesterol ester-deficient mutants were markedly lower than 25-RA when assayed in intact cells or in an in vitro reconstitution assay. The tightest mutant characterized, AC29, was found to have less than 1% of the parental acyl-CoA:cholesterol acyltransferase activity. These mutants all have reduced rates of sterol synthesis and lower low density lipoprotein receptor activity compared to 25-RA, probably as a consequence of their reduced enzyme activities. Cell fusion experiments revealed that the phenotypes of all the mutants examined are not dominant and that the mutants all belong to the same complementation group. We conclude that these mutants contain a lesion in the gene encoding acyl-CoA:cholesterol acyltransferase or in a gene encoding a factor needed for enzyme production.  相似文献   

4.
Protein denaturation resulting from temperatures between 42.0 degrees C and 50 degrees C has been observed and implicated as the lethal lesion for hyperthermic cell killing. A logical corollary is that protection against hyperthermic killing requires stabilization of cellular proteins against thermal denaturation. To test this, Chinese hamster ovary cells were treated with the heat protector cycloheximide and then subjected to differential scanning calorimetry to measure protein denaturation. Cycloheximide stabilized proteins that denatured between 42 degrees C and 52 degrees C in control cells by increasing their transition (denaturation) temperature by an average of 1.3 degrees C. In addition, cycloheximide reduced the cytotoxicity of actinomycin D and adriamycin, suggesting that protein stabilization protects cells against stresses other than hyperthermia.  相似文献   

5.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent Km values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9 ± 2.1 μM and 13.9 ± 0.3 μM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits ~85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl–oleate formation without influencing the retinyl–palmitate formation. Using this inhibitor, we estimate that ~64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

6.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent K(m) values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9+/-2.1 microM and 13.9+/-0.3 microM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits approximately 85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl-oleate formation without influencing the retinyl-palmitate formation. Using this inhibitor, we estimate that approximately 64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

7.
Compound 58-035 (3-[decyldimethylsilyl]-N-[2-(4-methylphenyl)-1-phenylethyl]pro panamide) has been found to inhibit the accumulation of cholesteryl esters in both rat hepatoma (Fu5AH) cells and arterial smooth muscle cells in culture. To explore the specificity of 58-035, we have studied the esterification of cholesterol, retinol, and glycerides by the Fu5AH cell and by isolated membranes. Exposure of Fu5AH to cholesterol/phospholipid dispersions and 58-035 (greater than 100 ng/ml) for 24 h resulted in greater than 95% inhibition of cholesterol esterification while cellular free cholesterol increased slightly. Inhibition was also rapid; incorporation of [3H]oleate into cholesteryl [3H]oleate equaled only 12% of control value after 30 min with 58-035 at 5 micrograms/ml. In contrast, there was no decrease in [3H]oleate incorporation into phospholipids or diglycerides, nor was the esterification of [3H]retinol inhibited by 58-035. In microsomal fractions, acyl-CoA:cholesterol acyltransferase could be inhibited completely by 58-035, while activities of acyl-CoA: retinol acyltransferase and triglyceride synthesis proceeded at 75-100% of control values. These observations that 58-035 is highly selective allow the inference that acyl-CoA:cholesterol acyltransferase is a separate microsomal enzyme whose activity can be modulated independently from acyl-CoA:retinol acyltransferase and other cellular acyltransferases.  相似文献   

8.
A new method for reconstituting acyl coenzyme A: cholesterol acyltransferase (ACAT) activity from either Chinese hamster ovary (CHO) or human fibroblast cell extracts into cholesterol-phosphatidylcholine liposomes is described. The method is rapid (less than 60 min) and easy to perform. The procedure involves solubilizing the cell extracts with deoxycholate followed by dilution into preformed liposomes. Ficoll gradient analysis demonstrated that, after reconstitution, almost all of the detectable ACAT activity co-migrated with the liposomes. Exogenous cholesterol in the liposomes was absolutely necessary for providing ACAT activity, but not for incorporation of the ACAT enzyme into the vesicle bilayer. Human fibroblast cell extracts prepared from cells grown in medium containing 10% fetal calf serum were found to contain a 10-fold higher microsomal ACAT activity compared to extracts from cells grown in 10% delipidated fetal calf serum. In contrast, when the ACAT activity from these extracts was measured using the reconstitution assay, there was no difference in the specific activities. These results support our previous work (Doolittle, G. M., and T. Y. Chang. 1982. Biochim. Biophys. Acta. 713: 529-537; and Chang, C. C. Y., et al. 1986. Biochemistry. 25: 1693-1699), and suggest that cholesterol regulates ACAT activity in CHO cells and human fibroblasts by mechanism(s) other than modulation of the amount of enzyme.  相似文献   

9.
Acyl-CoA:cholesterol acyltransferase (ACAT) is a membrane-bound enzyme that produces cholesteryl esters intracellularly. Two ACAT genes (ACAT1 and ACAT2) have been identified. The expression of ACAT1 is ubiquitous, whereas that of ACAT2 is tissue restricted. Previous research indicates that ACAT1 may contain seven transmembrane domains (TMDs). To study ACAT2 topology, we inserted two different antigenic tags (hemagglutinin, monoclonal antibody Mab1) at various hydrophilic regions flanking each of its predicted TMDs, and expressed the recombinant proteins in mutant Chinese hamster ovary cells lacking endogenous ACAT. Each tagged ACAT2 was expressed in the endoplasmic reticulum as a single undegraded protein band and was at least partially active enzymatically. We then used cytoimmunofluorescence and protease protection assays to monitor the sidedness of the hemagglutinin and Mab1 tags along the ER membranes. The results indicated that ACAT2 contains only two detectable TMDs, located near the N terminal region. We also show that a conserved serine (S245), a candidate active site residue, is not essential for ACAT catalysis. Instead, a conserved histidine (H434) present within a hydrophobic peptide segment, may be essential for ACAT catalysis. H434 may be located at the cytoplasmic side of the membrane.  相似文献   

10.
中国仓鼠卵巢(Chinese hamster ovary, CHO)细胞因其具有可悬浮培养及进行蛋白质糖基化等翻译后修饰等优势,在生物制药重组蛋白生产方面具有不可替代的重要作用。但转基因沉默、表观遗传修饰等影响基因表达调控,造成CHO细胞表达稳定性降低而导致重组蛋白产量下降。本文对CHO细胞中表观遗传修饰包括DNA甲基化、组蛋白修饰和miRNA的作用研究,以及对基因表达调控的影响进行了综述。  相似文献   

11.
The enzymatic activity and sterol substrate specificity of acyl coenzyme A:cholesterol acyltransferase (ACAT) were measured in microsomes of cells from Heliothis zea. Under standard assay conditions, the specific enzymatic activity of ACAT was highest in the intestine followed by the fat body and ovary (380.7, 30.7, 8.3 pmol/min per mg, respectively). The structure of the exogenous sterol used in the ACAT assay affected its rate of esterification. The relative rates of esterification of analogs of cholesterol with various modifications of the side chain were: 24-H greater than 24 alpha-CH3 greater than delta 22 greater than delta 24 greater than 24 alpha-C2H5 greater than 24 beta-CH3, delta 22-24 beta-CH3 and delta 22-24 alpha-C2H5. The number and position of double bonds in the B-ring of the sterol nucleus greatly affected the rate of esterification of sterols by ACAT. The average relative rates of esterification of sterols with differences in their B-rings were: delta 7 much greater than delta 8 greater than delta 0 greater than delta 5 greater than delta 5.7. The presence of a 9,14-cyclopropane group and/or methyl groups at the C-4 and 14 positions prevented significant esterification of such sterols. The formation of cholesteryl and lathosteryl esters was partially inhibited in microsomes from the intestine, fat body, and ovary by the addition of the ACAT inhibitor, 3-(decyldimethylsilyl)-N-[2-(4-methylphenyl)-1-phenylethyl]prop anamide (Sandoz Compound 58-035).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Growth of a temperature-sensitive general fatty acid synthesis mutant of Escherichia coli K12 at its restrictive temperature in the presence of exogenous palmitate results in lysis of the bacterium. Under these conditions, palmitate is incorporated into membrane phospholipid to a high level. Mutants of bacteria restricting this incorporation (having a palmitate-resistant phenotype) have been isolated and one such mutant, strain L8-2/3, has been further characterized. This mutant has lowered acyl-CoA synthetase (fadD) activity (25-33% of normal) and consequently is defective in fatty acid uptake. This lowered uptake could explain the palmitate-resistant phenotype of strain L8-2/3. However, both in vivo (fatty acid composition and positional distribution data) and in vitro (acyltransferase activity measurements) experiments suggest that this mutant is also altered in its acyltransferase activities. The mutation(s) of strain L8-2/3 appears to allow increased (approximately 2-fold) incorporation of myristate (and possible unsaturated fatty acids) into position 2 of 1-acyl-sn-glycerol 3-phosphate but normal palmitate incorporation into the same position. The incorporation of palmitate, myristate, and oleate into position 1 of sn-glycerol 3-phosphate by strain L8-2/3 is also higher than that observed with the parent, strain L8-2. Replacing the partially defective fadD gene of strain L8-2/3 with a wild type allele conferred on this strain the palmitate sensitivity and the acyltransferase activity of the parent strain L8-2. This finding, taken together with other data, suggests that acyl-CoA synthetase interacts with the acyltransferase(s) in some manner to influence the fatty acid specificity of the acyltransferase.  相似文献   

13.
The assembly pathway of the oligosaccharide chains of asparagine-linked glycoproteins in mammalian cells begins with the formation of GlcNAc-PP-dolichol in a reaction catalysed by the enzyme N-acetylglucosamine 1-phosphate transferase. We have investigated the efficiency of two lipid substrates for the transferase activity in an in vitro assay using Chinese hamster ovary (CHO) cell membranes as an enzyme source. Experiments were carried out with varying concentrations of dolichyl phosphate or its precursor, polyprenyl phosphate. We determined that enzyme activity was optimal at pH 9, where the enzyme exhibited a 3-fold higher Vmax and a 2-fold lower Km for the dolichol substrate. At pH 7.4, the Km and Vmax differences between the two lipids were 10-fold. Under all assay conditions tested, we found that GlcNAc-PP-lipid was the only product formed. We conclude from these results that dolichyl phosphate rather than polyprenyl phosphate is the preferred substrate for the transferase enzyme in CHO cells. This observation is significant in light of the fact that we have previously isolated CHO glycosylation mutants which fail to convert polyprenol into dolichol, and hence utilize polyprenyl derivatives for glycosylation reactions. Thus, these results contribute to our understanding of the glycosylation defects in the mutant cell lines.  相似文献   

14.
Resistance to cycloheximide (CHM) was studied in cultured Chinese hamster cells. Concentrations of CHM above 5.10−7M were toxic for the cells. At concentrations above 9.10−7M no colonies were recovered in selective medium. 15 resistant clones of independent origin were isolated in selective medium containing 7.10−7M CHM. Resistance was stable when the cells were cultured under non-selective conditions. The spontaneously mutation rate was determined by the fluctuation test. Mutations to CHM resistance arose spontaneously. The spontaneous mutation rate to CHM resistance was about 10−5.  相似文献   

15.
An acyl coenzyme A:cholesterol acyltransferase activity which directly incorporates palmitoyl coenzyme A into cholesterol esters using endogenous cholesterol as substrate was demonstrated in microsomal preparations from neonatal chick brain. The enzyme showed, at pH 7.4, about 2-fold greater activity than that observed at pH 5.6. Nearly 10-times higher esterifying activity was found in brain microsomes using palmitoyl coenzyme A than that with palmitic acid. The acyltransferase activity was clearly different from the other cholesterol-esterifying enzymes previously found in brain, which incorporated free fatty acids into cholesterol esters and did not require ATP or coenzyme A as cofactors. Chick brain microsomes also incorporated palmitoyl coenzyme A into phospholipids and triacylglycerols. However, most of the radioactivity from this substrate was found in the fatty acid fraction, due to the presence of an acyl coenzyme A hydrolase activity in the enzyme preparations. Therefore, the formation of palmitate was tested during all the experiments. The brain acyltransferase assay conditions were optimized with respect to protein concentration, incubation time and palmitoyl coenzyme A concentration. Microsomal activity was independent of the presence of dithiothreitol in the incubation medium and microsomes can be stored at -40 degrees C for several weeks without losing activity. Addition of fatty acid-free bovine serum albumin to brain microsomal preparations produced a considerable increase in the acyltransferase activity, while acyl coenzyme A hydrolase was clearly inhibited. Results obtained show the existence in neonatal chick brain of an acyl coenzyme A:cholesterol acyltransferase activity similar to that found in a variety of tissues from different species but not previously reported in brain.  相似文献   

16.
An acyl coenzyme A:cholesterol acyltransferase activity which directly incorporates palmitoyl coenzyme A into cholesterol esters using endogenous cholesterol as substrate was demonstrated in microsomal preparations from neonatal chick brain. The enzyme showed, at pH 7.4, about 2-fold greater activity than that observed at pH 5.6. Nearly 10-times higher esterifying activity was found in brain microsomes using palmitoyl coenzyme A than that with palmitic acid. The acyltransferase activity was clearly different from the other cholesterol-esterifying enzymes previously found in brain, which incorporated free fatty acids into cholesterol esters and did not require ATP or coenzyme A as cofactors. Chick brain microsomes also incorporated palmitoyl coenzyme A into phospholipids and triacylglycerols. However, most of the radioactivity from this substrate was found in the fatty acid fraction, due to the presence of an acyl coenzyme A hydrolase activity in the enzyme preparations. Therefore, the formation of palmitate was tested during all the experiments. The brain acyltransferase assay conditions were optimized with respect to protein concentration, incubation time and palmitoyl coenzyme A concentration. Microsomal activity was independent of the presence of dithiothreitol in the incubation medium and microsomes can be stored at −40°C for several weeks without losing activity. Addition of fatty acid-free bovine serum albumin to brain microsomal preparations produced a considerable increase in the acyltransferase activity, while acyl coenzyme A hydrolase was clearly inhibited. Results obtained show the existence in neonatal chick brain of an acyl coenzyme A:cholesterol acyltransferase activity similar to that found in a variety of tissues from different species but not previously reported in brain.  相似文献   

17.
ATP binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. It is proposed that ABCA1 reorganizes the plasma membrane and generates more loosely packed domains that facilitate apoA-I-dependent cholesterol efflux. In this study, we examined the effects of the cellular sphingomyelin level on HDL formation by ABCA1 by using a Chinese hamster ovary-K1 mutant cell line, LY-A, which has a missense mutation in the ceramide transfer protein CERT. When LY-A cells were cultured in Nutridoma-BO medium and sphingomyelin content was reduced, apoA-I-dependent cholesterol efflux by ABCA1 from LY-A cells increased 1.65-fold compared with that from LY-A/CERT cells stably transfected with human CERT cDNA. Exogenously added sphingomyelin significantly reduced the apoA-I-dependent efflux of cholesterol from LY-A cells, confirming that the decrease in sphingomyelin content in the plasma membrane stimulates cholesterol efflux by ABCA1. The amount of cholesterol available to cold methyl-beta-cyclodextrin (MbetaCD) extraction from LY-A cells was increased by 40% by the expression of ABCA1 and was 1.6-fold higher than that from LY-A/CERT cells. This step in ABCA1 function, making cholesterol available to cold MbetaCD, was independent of apoA-I. These results suggest that the function of ABCA1 could be divided into two steps: (i) a flopping step to move phosphatidylcholine and cholesterol from the inner to outer leaflet of the plasma membrane, where cholesterol becomes available to cold MbetaCD extraction, and (ii) a loading step to load phosphatidylcholine and cholesterol onto apoA-I to generate HDL.  相似文献   

18.
Volume regulation of Chinese hamster ovary cells in anisoosmotic media   总被引:2,自引:0,他引:2  
Chinese hamster ovary (CHO) cells when suspended in anisoosmotic media regulate their volumes by the activation of specific ion transport pathways. In hypoosmotic media the cells first swell and then return to their isoosmotic volumes by the loss of cellular KCl and osmotically obliged water. This regulatory volume decrease (RVD) is insensitive to ouabain or bumetanide but is blocked by quinine, cetiedil and oligomycin C. Based on cell volume and membrane potential measurements under various experimental conditions, we conclude that hypoosmotic shock activates independent, conductive transport pathways for K+ and for Cl-, respectively. The anion pathway can also transport NO3- and SCN- but not gluconate- anions. Osmotic shrinkage of CHO cells does not produce a regulatory volume increase (RVI) unless the cells have previously undergone a cycle of RVD. RVI is a Na+-dependent, amiloride-sensitive, but ouabain- and oligomycin-insensitive process, probably involving a Na+-H+ exchange system. Internal acidification of isoosmotic cells by addition of a permeable weak acid also activates an amiloride-sensitive Na+-H+ exchange, producing a volume increase. Both RVD and RVI in CHO cells seem to involve molecular mechanisms similar to those described for the volume regulation of lymphocytes, indicating the prevalence of these phenomena in nucleated mammalian cells. Cultured CHO cell lines may provide a basis for a genetic characterization of the volume-regulatory transport pathways.  相似文献   

19.
Regulation of transglutaminase activity in Chinese hamster ovary cells   总被引:3,自引:0,他引:3  
We have investigated the regulation of transglutaminase activity (epsilon-(gamma-glutamyl)lysine crosslinking enzyme) in Chinese hamster ovary cells in culture. We report that transglutaminase activity increases several-fold in CHO cells at maximum density in suspension culture. This increase cannot be explained by the presence of soluble regulators of the enzyme activity or the appearance of a new enzyme activity with a different affinity for substrate, but appears to be due to an increase in total enzyme activity. Treatment of CHO cells at low cell density with 8-bromo cyclic AMP results in a small increase (20--70%) in transglutaminase activity. By studying CHO mutants which have altered or absent cyclic-AMP-dependent protein kinases, we have demonstrated that the effect of cyclic AMP on transglutaminase activity at low cell density is mediated by cyclic-AMP-dependent protein kinase. However, the protein kinase mutants show normal increases in transglutaminase activity at high cell density, indicating that cyclic AMP-dependent protein kinase does not mediate density-dependent changes in transglutaminase activity.  相似文献   

20.
We have investigated the regulation of transglutamine activity (-(γ-glutamyl)lysine crosslinking enzme) in Chinese hamster ovary cells in culture. We report that transglutaminase activity increases several-fold in CHO cells at maximum density in suspension culture. This increase cannot be explained by the presence of the soluble regulators of the enzyme activity or the appearance of a new enzyme activity with a different affinity for substrate, but appears to be due to an increase in total enzyme activity. Treatment of CHO cells at low cell density with 8-bromo cyclic AMP results in a small increase (20–70%) in transglutaminase activity. By studying CHO mutants which have altered or absent cyclic-AMP-dependent protein kinases, we have demonstrated that the effect of cyclic AMP on transglutaminase activity at low cell density is mediated by cyclic-AMP-dependent protein kinase. However, the protein kinase mutants show normal increases in transglutaminase activity at high cell density, indicating that cyclic AMP-dependent protein kinase does not mediate density-dependent changes in transglutaminase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号