首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The same total dose (1.2 g/kg/week) of 2,5-hexanedione (2,5-HD) was administered subcutaneously at 100 mg/kg/12 hr, 200 mg/kg/24 hr, and 400 mg/kg/48 hr to three groups of Donryu rats. The peripheral neuropathy induced by 2,5-HD was confirmed by clinical observation every day, and neurophysiological measurements every 4 weeks. During the 15th week of this experiment, 2,5-HD concentrations in plasma 0.5 to 24 hours after injection were determined. It was found that the greater the dose of 2,5-HD per treatment injected, the earlier peripheral neuropathy developed. Toxicokinetic analysis showed that both the values of the area under the plasma concentration versus time curve and the half life of 2,5-HD were increased, but the excretion parameters (Ke) were decreased, in animals treated with 200 mg/kg/24 hr and 400 mg/kg/48 hr 2,5-HD.  相似文献   

2.
Neuroinvasion of the CNS during orally acquired transmissible spongiform encephalopathies (TSEs) may involve the transport of the infectious agent from the periphery to the CNS via the peripheral nerves. If this occurs within axons, the mechanism of axonal transport may be fundamental to the process. In studies of peripheral nerve we observed that the cellular prion protein (PrPc) is highly resistant to detergent extraction. The implication of this is an underestimation of the abundance of PrPc in peripheral nerve. We have developed nerve extraction conditions that enhance the quantification of the protein in nerve 16-fold. Application of these conditions to evaluate the accumulation of PrPc distal to a cut nerve now reveals that PrPc is retrogradely transported from the axon ending. These results provide a potential cellular mechanism for TSE infectivity to gain entry to the CNS from the periphery.  相似文献   

3.
Anterograde slow and fast axonal transport was examined in rats intoxicated with 2,5-hexanedione (1 g/kg/week) for 8 weeks. Distribution of radioactivity was measured in 3-mm segments of the sciatic nerve after labelling of proteins with [35S]methionine or [3H]leucine and glycoproteins with [3H]fucose. The axonal transport of the anterograde slow components was examined after 25 (SCa) and 10 days (SCb), in motor and sensory nerves. SCa showed an increased transport velocity in motor (1.25 +/- 0.08 mm/day versus 1.01 +/- 0.05 mm/day) and in sensory nerves (1.21 +/- 0.13 mm/day versus 1.06 +/- 0.07 mm/day). The relative amount of labelled protein in the SCa wave in both fiber systems was also increased. SCb showed unchanged transport velocity in motor as well as in sensory nerves, whereas the amount of label was decreased in the motor system. Anterograde fast transport in motor nerves was examined after intervals of 3 and 5 h, whereas intervals of 2 and 4 h were used for sensory nerves. Velocities and amounts of labelled proteins of the anterograde fast component remained normal. We suggest that the increase in protein transport in SCa reflects axonal regeneration.  相似文献   

4.
The composition of retrogradely transported axonal proteins was examined by acrylamide gel electrophoresis and gel autoradiography in the experimental neuropathy induced in rats by p-bromophenylacetylurea (BPAU). Protein composition was normal during the early phase of retrograde transport but showed significant abnormalities during a later phase. The early phase consisted of proteins collected distal to a mid-thigh ligature of sciatic nerve between 15 and 24 hours after injection of [35S] methionine into lumbar ventral horn of the spinal cord. In terms of their relative labeling and electrophoretic mobility, these proteins were almost identical in experimental and control rats. Most of the labeled protein bands were also identical in the later phase, collected between 24 and 48 hours, but there were some consistent omissions and additions. Present in controls but missing in BPAU treated rats were three bands at 42, 41, and 25 KDa. In contrast, 4 bands (63, 56, 50, 26 KDa) were more prominent in the experimental rats than in controls. We suspect abnormal post-translational modification or proteolysis of rapidly transported proteins in the terminal or preterminal portion of the neurons exposed to BPAU. This abnormality, in addition to a previously reported premature processing of transported organelles, may underlie the development of peripheral neuropathy.  相似文献   

5.
Taxol exerts a potent effect on the assembly and stability of cellular micro tubules. In the present study this drug was injected into the facial nerve of mice, and its influence on retrograde axonal transport and on morphology of the facial nerve cell bodies was monitored. A reduction in the amount of retrogradely transported fluorescein isothiocyanate-conjugated wheat germ agglutinin from the peripheral field of innervation to neuronal perikarya was demonstrated by cytofluorometry. Transport was not completely blocked, since some degree of tracer accumulation was found in most neurons. Morphometric analysis was employed to determine the volume fraction of cells and cell nuclei as well as nucleolar size on micrographs of the facial nucleus. After facial nerve transection the reaction in nerve cell bodies was similar in taxol-injected animals and in animals not exposed to this substance. Furthermore, intraneural injection of taxol without prior nerve section resulted in nucleolar enlargement. The present data show that taxol-induced disturbances in microtubule organisation interferes with the retrograde axonal transport and suggest that changes associated with the retrograde nerve cell reaction may develop when the transfer of material from the peripheral field of innervation is disturbed.  相似文献   

6.
The anterograde axonal transport of choline-phosphoglycerides was studied in sciatic nerve motoneurons of adult (3-month-old) and aged (24-month-old) rats. After the spinal cord injection of [2-3H]glycerol, choline-phosphoglycerides; the major phospholipid class was transported along the nerve. The axonal transport rate was determined by plotting the distance covered by the front of transported radioactivity as a function of the time employed. In aged animals the rate of the choline-phosphoglyceride anterograde axonal transport was about 68% lower than that of adults; furthermore, the rate slowed down along the nerve in the proximal-distal direction. This alterated axonal transport mechanism might contribute to the degenerative processes observed in distal regions of peripheral nerve fibers of aged animals.  相似文献   

7.
The regional changes in quantities of the glial S-100 protein and the neuron specific enolase in the rat nervous system have been studied after long-term exposure to 2,5-hexanedione. The wet weights of most of the examined nervous tissues were found to be reduced, with an extensive effect seen in the brain stem. Using dot immunobinding assays, the concentrations of S-100 were found to be increased in most of the examined tissues, but unaffected in the brain stem. The total amount of S-100 per tissue was markedly reduced in the brain stem. The content of neuron specific enolase was reduced only in the brain stem. Thus the effects of 2,5-hexanedione on the nervous system varied regionally. The brain stem was severely atrophied with a reduction of neuronal as well as of glial marker proteins. Other brain regions contained increased glial cell marker proteins as signs of progressive astroglial reactions.  相似文献   

8.
Cui N  Li S  Zhao X  Zhang T  Zhang C  Yu L  Zhu Z  Xie K 《Neurochemical research》2007,32(9):1566-1572
Occupational exposure and experimental intoxication with n-hexane or its metabolite 2,5-hexanedione (HD) produce a central-peripheral neuropathy. However, the mechanism remains unknown. We hypothesized that HD affected the expression of Bcl-2, Bax and Caspase-3 in the central nervous system (CNS) and the peripheral nervous system (PNS). Male adult Wistar rats were administered by intraperitoneal injection at a dosage of 200 or 400 mg/kg HD, five days per week for 8 weeks. Samples of the cerebral cortex, cerebellum, spinal cord and sciatic nerves were collected and examined for Bcl-2, Bax and Caspase-3 expression using Western blotting. Subchronic exposure to HD resulted in significantly increased expression of both anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax and Caspase-3 in cerebral cortex and cerebellum, which exhibited a dose-dependent pattern. Though little change was detected in spinal cord, our results showed that the expression of Bcl-2, Bax and Caspase-3 was markedly enhanced in the sciatic nerves. These findings suggested that the changes of apoptosis-related protein level in rat nerve tissues were associated with the intoxication of HD, which might be involved in early molecular regulatory mechanism of apoptosis in the HD-induced neuropathy.  相似文献   

9.
Chen XQ  Wang B  Wu C  Pan J  Yuan B  Su YY  Jiang XY  Zhang X  Bao L 《Cell research》2012,22(4):677-696
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.  相似文献   

10.
Dystonia musculorum (dt) mice suffer from a severe sensory neuropathy caused by mutations in the gene encoding the cytoskeletal cross-linker protein dystonin/bullous pemphigoid antigen 1 (Bpag1). Loss of function of dystonin/Bpag1 within neurons leads to a loss in the maintenance of cytoskeletal organization and to the development of focal axonal swellings prior to death of the neuron. In the present study, we demonstrate that neurons within the sciatic nerves of dt27J mice undergo axonal degeneration as has been previously reported for the dorsal roots. Furthermore, ultrastructural studies reveal a perturbed organization of the neurofilament and microtubule networks within the axons of sciatic nerves in dt27J mice. The disrupted cytoskeletal organization suggested that axonal transport is affected in dt mice. To address this, we assessed fast axonal transport by measuring the rate of accumulation of acetylcholinesterase (AChE) proximal and distal to a surgically introduced ligature on the sciatic nerves of normal and dt27J mice. Our findings demonstrate that axonal transport of AChE in both orthograde and retrograde directions is markedly affected, and allow us to conclude that axonal transport defects do exist in the sciatic nerves of dt27J mice.  相似文献   

11.
In the present review honoring Hans Thoenen's contributions to the concept of uptake and retrograde transport of trophic molecules, I have attempted to identify the major historical pathways that had to converge before this concept could be accepted as a fundamental principle in neurobiology. Some of the critical events in this history which are discussed here include: neuron-target interactions, bidirectional trophic signals, axoplasmic transport, receptor-mediated endocytosis, transneuronal trophic signals, the discovery of NGF, the retrograde transport of NGF, and the production of NGF by target tissues. Only when all of these diverse pieces of the puzzle were in place was the concept finally confirmed as being the mechanism that mediates the many phenomena attributed to the regulation and maintenance of neurons by their targets. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

12.
Tau protein is present in six different splice forms in the human brain and interacts with microtubules via either 3 or 4 microtubule binding repeats. An increased ratio of 3 repeat to 4 repeat isoforms is associated with neurodegeneration in inherited forms of frontotemporal dementia. Tau over-expression diminishes axonal transport in several systems, but differential effects of 3 repeat and 4 repeat isoforms have not been studied. We examined the effects of tau on mitochondrial transport and found that both 3 repeat and 4 repeat tau change normal mitochondrial distribution within the cell body and reduce mitochondrial localization to axons; 4 repeat tau has a greater effect than 3 repeat tau. Further, we observed that the 3 repeat and 4 repeat tau cause different alterations in retrograde and anterograde transport dynamics with 3 repeat tau having a slightly stronger effect on axon transport dynamics. Our results indicate that tau-induced changes in axonal transport may be an underlying theme in neurodegenerative diseases associated with isoform specific changes in tau's interaction with microtubules.  相似文献   

13.
14.
The intricate geometry of neuronal networks poses many unique cell-biological problems regarding the way a growing axon responds to its environment. Several groups of ligand-receptor pairs have been identified to regulate such processes. In this study, we take class 3 semaphorins as an example and review what is known about the intracellular movements of semaphorins throughout neuronal cells, transport support structures and location of release sites. We discuss how their receptor trafficking may contribute to regulate membrane dynamics underlying growth cone motility and the physiological contribution made by class 3 semaphorins-induced acceleration of axoplasmic transport on neurite development.  相似文献   

15.
Summary Changes in the proximal stump of axons of divided rat sciatic nerves in the first 6 weeks after nerve section were studied, particularly in terms of alterations in the organelle content, axoplasmic ultrastructure and the diameter of the axons. A variety of organelle types were observed; quasi-membranous structures, multivesicular bodies, dense bodies, vesicles and tubules, dense cored vesicles and alveolate vesicles: their identification and the functional implications of their presence are discussed. Alterations in the ultrastructure of the stained elements of the axoplasm are described. Axons containing excess organelles were divided into classes, comprising myelinated axons; and supergiant, giant and conventional non-myelinated axons. Temporal changes in these axons are described. The characteristics of the various classes of apparently non-myelinated axon are considered in terms of their identification as regenerating terminal sprouts of myelinated axons, segmentally demyelinated axons, sections through abnormal nodes of Ranvier or merely non-myelinated axons. The structure of axons in regenerating units is described. Changes in the neurofilament microtubule ratio of small axons without excess organelles are demonstrated, and spiralling of neurofilaments in some myelinated and non-myelinated axons with normal axoplasmic ultrastructure is illustrated and discussed.Medical Research Council Scholar.McLoughlin Fellow.The authors have great pleasure in acknowledging the expert technical assistance of Mrs. Frances Burton. G. W. would also like to thank the British Medical Research Council, the Wellcome Trust and LEPRA (British Leprosy relief association) for financial assistance without which this work could not have been completed.  相似文献   

16.
Using immunofluorescence and cytofluorimetric scanning (CFS), we investigated the short-term (1-7 days) influence of lower thoracic spinal cord transection on lumbar motor neurons. The content of calcitonin gene-related peptide- (CGRP) like immunoreactivity (LI), chromogranin A (Chr A) -LI, vasoactive intestinal polypeptide (VIP)-LI, Syn I-LI, and synaptophysin (p38)-LI in motor perikarya, and the anterograde and retrograde axonal transport of these substances in the sciatic nerve, were studied in nerve crush (6 h) experiments. During the week after transection, CGRP-LI in perikarya decreased, whereas Chr A-LI increased. VIP-LI, co-localized with Chr A-LI in motor perikarya, did not change after transection. The antero- and retrograde transport of CGRP-LI in the sciatic nerve, occurring in both motor and sensory axons, appeared unchanged in cytofluorimetric scanning (CFS) graphs, but the microscopical picture clearly showed that large motor axons had a decreased content of CGRP-LI at 3 and 7 days posttransection, whereas thinner axons were unchanged in fluorescence intensity. The anterograde transport of Chr A-LI, present in both motor and postganglionic adrenergic axons, was decreased 1 and 3 days after lesion, but returned to control by day 7. There was a marked decrease in anterograde transport of VIP-LI, present mainly in postganglionic sympathetic axons, at day 3, but at 7 days transport was normal. The amounts of transported p38, the synaptic vesicle marker, were in the normal range during the whole period. Syn I-LI accumulation anterogradely was somewhat decreased at 3 and 7 days posttransection, and at 1 day the retrograde accumulation was significantly increased. The results suggest that removal of supraspinal input to intact lower motor neurons causes alterations in metabolism and axonal transport of organelle-associated substances, partly probably related to the complex pattern of transmitter leakage from degenerating, descending nerve terminals. These alterations appear to take place also in postganglionic sympathetic neurons in the sciatic nerve, that originate in the lumbar sympathetic chain. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
Mutations in spastin are the most common cause of hereditary spastic paraplegia (HSP) but the mechanisms by which mutant spastin induces disease are not clear. Spastin functions to regulate microtubule organisation, and because of the essential role of microtubules in axonal transport, this has led to the suggestion that defects in axonal transport may underlie at least part of the disease process in HSP. However, as yet there is no direct evidence to support this notion. Here we analysed axonal transport in a novel mouse model of spastin-induced HSP that involves a pathogenic splice site mutation, which leads to a loss of spastin protein. A mutation located within the same splice site has been previously described in HSP. Spastin mice develop gait abnormalities that correlate with phenotypes seen in HSP patients and also axonal swellings containing cytoskeletal proteins, mitochondria and the amyloid precursor protein (APP). Pathological analyses of human HSP cases caused by spastin mutations revealed the presence of similar axonal swellings. To determine whether mutant spastin influenced axonal transport we quantified transport of two cargoes, mitochondria and APP-containing membrane bound organelles, in neurons from mutant spastin and control mice, using time-lapse microscopy. We found that mutant spastin perturbs anterograde transport of both cargoes. In neurons with axonal swellings we found that the mitochondrial axonal transport defects were exacerbated; distal to axonal swellings both anterograde and retrograde transport were severely reduced. These results strongly support a direct role for defective axonal transport in the pathogenesis of HSP because of spastin mutation.  相似文献   

18.
The effect of the racemic mixture of 3,4-methylenedioxymethamphetamine (MDMA) on the synthesis of dopamine in the terminals of nigrostriatal and mesolimbic neurons was estimated by measuring the accumulation of 3,4-dihydroxyphenylalanine (DOPA) in the striatum and nucleus accumbens 30 min following the administration of the L-aromatic amino acid decarboxylase inhibitor, 3-hydroxybenzylhydrazine. MDMA produced an increase in DOPA accumulation in the striatum which was greater in magnitude and longer in duration than that in the nucleus accumbens. Although the concentrations of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in both the striatum and nucleus accumbens were reduced 3 h following an injection of MDMA (20 mg/kg), 5-HT and 5-HIAA concentrations were significantly reduced only in the striatum 7 days after the administration of MDMA. Pretreatment with a 5-HT2 antagonist, ketanserin, significantly attenuated the reduction in 5-HT concentration in the striatum 3 h following MDMA administration and completely blocked 5-HT depletion at 7 days post administration. Moreover, ketanserin completely blocked MDMA-induced DOPA accumulation in the striatum. The results obtained in these studies suggest that MDMA activates nigrostriatal dopaminergic pathways via 5-HT2 receptors. In addition, these data are supportive of the hypothesis that dopamine plays a role in MDMA-induced 5-HT depletion.  相似文献   

19.
20.
Eukaryotic organisms utilize microtubule-dependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster, we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock (robl), exhibits diverse defects in intracellular transport including axonal transport and mitosis. These defects include intra-axonal accumulations of cargoes, severe axonal degeneration, and aberrant chromosome segregation. The gene identified by robl encodes a 97-amino acid polypeptide that is 57% identical (70% similar) to the 105-amino acid Chlamydomonas outer arm dynein-associated protein LC7, also reported here. Both robl and LC7 have homology to several other genes from fruit fly, nematode, and mammals, but not Saccharomyces cerevisiae. Furthermore, we demonstrate that members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. We propose that roadblock/LC7 family members may modulate specific dynein functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号