首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GdmCl-induced unfolding of rabbit muscle creatine kinase, CK, has been studied by a variety of physico-chemical methods including near and far UV CD, SEC, intrinsic fluorescence (intensity, anisotropy and lifetime) as well as intensity and lifetime of bound ANS fluorescence. The formation of several stable unfolding intermediates, some of which were not observed previously, has been established. This was further confirmed by representation of fluorescence data in terms of "phase diagram", i.e. I(lambda1) versus I(lambda2) dependence, where I(lambda1) and I(lambda2) are fluorescence intensity values measured on wavelengths lambda(1) and lambda(2) under the different experimental conditions for a protein undergoing structural transformations. The unfolding behavior of CK was shown to be strongly affected by association of partially folded intermediates. A model of CK unfolding, which takes into account both structural perturbations and association of partially folded intermediates has been elaborated.  相似文献   

2.
3.
Wang PF  Flynn AJ  Naor MM  Jensen JH  Cui G  Merz KM  Kenyon GL  McLeish MJ 《Biochemistry》2006,45(38):11464-11472
All known guanidino kinases contain a conserved cysteine residue that interacts with the non-nucleophilic eta1-nitrogen of the guanidino substrate. Site-directed mutagenesis studies have shown that this cysteine is important, but not essential for activity. In human muscle creatine kinase (HMCK) this residue, Cys283, forms part of a conserved cysteine-proline-serine (CPS) motif and has a pKa about 3 pH units below that of a regular cysteine residue. Here we employ a computational approach to predict the contribution of residues in this motif to the unusually low cysteine pKa. We calculate that hydrogen bonds to the hydroxyl and to the backbone amide of Ser285 would both contribute approximately 1 pH unit, while the presence of Pro284 in the motif lowers the pKa of Cys283 by a further 1.2 pH units. Using UV difference spectroscopy the pKa of the active site cysteine in WT HMCK and in the P284A, S285A, and C283S/S285C mutants was determined experimentally. The pKa values, although consistently about 0.5 pH unit lower, were in broad agreement with those predicted. The effect of each of these mutations on the pH-rate profile was also examined. The results show conclusively that, contrary to a previous report (Wang et al. (2001) Biochemistry 40, 11698-11705), Cys283 is not responsible for the pKa of 5.4 observed in the WT V/K(creatine) pH profile. Finally we use molecular dynamics simulations to demonstrate that, in order to maintain the linear alignment necessary for associative inline transfer of a phosphoryl group, Cys283 needs to be ionized.  相似文献   

4.
The mechanism of inhibition of creatine kinase (CK) by acrylamide (Acr) has been examined (in vitro). Within the concentration range of 0 to 1 M, Acr markedly inhibited CK and depleted the protein thiols. Both inactivation and thiol depletion were time- and Acr concentration-dependent. Addition of dithiothreitol (DTT) did not reactivate CK inactivated by Acr. However, CK with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) pre-blocked thiols can be reactivated by DTT after incubation with Acr. The transition-state analogue also had a significant protective effect on CK against Acr inhibition. We conclude that thiol alkylation is a critical event in inactivation of CK by Acr. Furthermore, Acr binding to CK changed its surface charge, which may be the same effect for the toxicity of Acr towards other proteins.  相似文献   

5.
Three crystal forms of rabbit muscle creatine kinase have been grown, one of which seems suited to a high resolution X-ray diffraction study. The first form is of monoclinic space group P21 with a = 54 A?, b = 114 A?, c = 145 A?, β = 91 ° and has as the asymmetric unit two molecules of total molecular weight 160, 000. The second form, grown in the presence of mercurials, is of space group A2 with a = 52 A?, b = 165 A?, c = 237 A?, β = 91 ° and also has two molecules in the asymmetric unit. The third crystal form, grown in the presence of a high concentration of cysteine, is of apparent space group P212121, but evidence indicates that the true space group may be P21221. The dimensions of the orthorhombic unit cell are a = 47 A?, b = 86 A?, c = 125 A?, and the asymmetric unit contains a single protein subunit. Assuming the latter space group, then the creatine kinase molecule possesses a twofold axis relating two identical subunits.  相似文献   

6.
An essential tryptophan residue for rabbit muscle creatine kinase   总被引:1,自引:0,他引:1  
The tryptophan residues in rabbit muscle creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) have been modified by dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide after reversible protection of the reactive SH groups. The modification of two tryptophan residues as measured by spectrophotometric titration leads to complete loss of enzymatic activity. Control experiments show that reversible protection of the reactive SH groups as S-sulfonates followed by reduction results in nearly quantitative recovery of enzyme activity. The presence of a 410 nm absorption maximum and the decrease in fluorescence of the modified enzyme indicate the modification of tryptophan residues. At the same time, SH determinations after reduction of the modified enzyme show that the reagent has not affected the protected SH groups. Quantitative treatment of the data (Tsou, C.-L. (1962) Sci. Sin. 11, 1535 1558) shows that among the tryptophan residues modified, one is essential for its catalytic activity. The presence of substrates partially protects the modification of tryptophan residues as well as the inactivation, suggesting that the essential tryptophan residue is situated at the active site of this enzyme.  相似文献   

7.
Crystallization is the primary rate-limiting step in protein structure determination. It has been our experience over approximately 10 years that crystals are obtained in about 20% of the proteins attempted and that only about 10% of these crystals are sufficiently well ordered to permit atomic resolution structure analysis. In attempts to overcome this limitation, we have investigated the effect on crystallization of microheterogeneity in a protein regarded as pure by conventional criteria. Creatine kinase was purified from rabbit skeletal muscle and crystallized from methylpentanediol. The protein appeared to be nearly pure judging by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high specific activity. The crystals that were obtained were of poor quality, and an extensive survey of precipitants, crystallization conditions, and additives failed to discover conditions from which usable crystals could be obtained. The enzyme was then subjected to a series of further purification steps. After each purification step, the quality of the crystals obtained under almost identical conditions improved. The final purification step was flat-bed isoelectric focusing. Crystals grown from focused creatine kinase are well ordered and diffract to approximately 3-A resolution.  相似文献   

8.
9.
Rabbit muscle creatine kinase (CK) was modified by 5,5'-dithio-bis(2-nitrobenzoic acid) accompanied by 3 M guanidine hydrochloride denaturation to produce a partially folded state with modified thiol groups. The partially folded CK was in a monomeric state detected by size exclusion chromatography, native-polyacrylamide gel electrophoresis, circular dichroism, and intrinsic fluorescence studies. After dithiothreitol (DTT) treatment, about 70% CK activity was regained with a two-phase kinetic course. Rate constants calculated for regaining of activity and refolding were compared with those for CK modified with various treatments to show that refolding and recovery of activity were synchronized. To further characterize the partially folded CK state and its folding pathway, the molecular chaperone GroEL was used to evaluate whether it can bind with partly folded CK during refolding, and 1-anilinonaphthalene-8-sulfonate was used to detect the hydrophobic surface of the monomeric state of CK. The monomeric state of CK did not bind with GroEL, although it had a larger area of hydrophobic surface relative to the native state. These results may provide different evidence for the structural requirement of GroEL recognition to the substrate protein compared with previously reported results that GroEL bound with substrate proteins mainly through hydrophobic surface. The present study provides data for a monomeric intermediate trapped by the modification of the SH groups during the refolding of CK. Schemes are given for explaining both the partial folding CK pathway and the refolding pathway.  相似文献   

10.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

11.
1. The nature of the subunits in rabbit muscle triose phosphate isomerase has been investigated. 2. Amino acid analyses show that there are five cysteine residues and two methionine residues/subunit. 3. The amino acid sequences around the cysteine residues have been determined; these account for about 75 residues. 4. Cleavage at the methionine residues with cyanogen bromide gave three fragments. 5. These results show that the subunits correspond to polypeptide chains, containing about 230 amino acid residues. The chains in triose phosphate isomerase seem to be shorter than those of other glycolytic enzymes.  相似文献   

12.
The reaction of rabbit muscle creatine kinase with diethyl pyrocarbonate was studied. It was found that up to five of the sixteen histidine groups per enzyme subunit could be modified, and under the conditions employed, there was no evidence for formation of the disubstituted derivative of histidine. Evidence was obtained for small but significant amounts of modification of lysine and cysteine groups; tyrosine groups were not modified. Modification of the enzyme led to inactivation; this could be protected against by inclusion of substrates or, more effectively, by inclusion of the combination MgADP plus creatine plus nitrate, which is thought to produce a 'transition-stage-analogue' complex. Analysis of data on the rates of inactivation and the stoicheiometry of modification suggested that there was one essential histidine group per enzyme subunit, modification of which led to inactivation.  相似文献   

13.
Two fused proteins of dimeric arginine kinase (AK) from sea cucumber and dimeric creatine kinase (CK) from rabbit muscle, named AK-CK and CK-AK, were obtained through the expression of fused AK and CK genes. Both AK-CK and CK-AK had about 50% AK activity and about 2-fold K m values for arginine of native AK, as well as about 50% CK activity and about 2-fold K m values for creatine of native CK. This indicated that both AK and CK moieties are fully active in the two fused proteins. The structures of AK, CK, AK-CK, and CK-AK were compared by collecting data of far-UV circular dichroism, intrinsic fluorescence, 1-anilinonaphthalene-8-sulfonate binding fluorescence, and size-exclusion chromatography. The results indicated that dimeric AK and CK differed in the maximum emission wavelength, the exposure extent of hydrophobic surfaces, and molecular size, though they have a close evolutionary relationship. The structure and thermodynamic stability of AK, CK, AK-CK, and CK-AK were compared by guanidine hydrochloride (GdnHCl) titration. Dimeric AK was more dependent on the cooperation of two subunits than CK according to the analysis of residual AK or CK activity with GdnHCl concentration increase. Additionally, AK and CK had different denaturation curves induced by GdnHCl, but almost the same thermodynamic stability. The two fused proteins, AK-CK and CK-AK, had similar secondary structure, tertiary structure, molecular size, structure, and thermodynamic stability, which indicated that the expression order of AK and CK genes might have little effect on the characteristics of the fused proteins and might further verify the close relationship of dimeric AK and CK. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1208–1214.  相似文献   

14.
Substrate- and ligand-induced conformational changes were studied in a series of thiol-modified derivatives of rabbit muscle creatine kinase that retained different amounts of enzymic activity. The results indicate that the 'reactive' thiol group of the enzyme is required for the conformational changes associated with formation of a 'transition-state analogue' complex.  相似文献   

15.
The effect of limited proteolysis on rabbit muscle creatine kinase.   总被引:4,自引:3,他引:1       下载免费PDF全文
We report a novel assay method for enterokinase capable of detecting approx. 1 fmol of enzyme. The method depends on quantification of the release of specifically radiolabelled activation peptides from bovine trypsinogen and is unaffected by trypsin inhibitors. The assay is applicable to biological fluids such as serum. The substrate was produced by selective epsilon-amidination of bovine trypsinogen followed by acetylation with [3H]acetic anhydride and deprotection. The assay has been used to study the effects of pH, Ca2+, ionic strength abd glycodeoxycholate on enterokinase activity.  相似文献   

16.
17.
The unfolding and refolding of creatine kinase (ATP:creatine N-phosphotransferase (CK), EC 2.7.3.2) during denaturation and reactivation by trifluoroethanol (TFE) have been studied. Significant aggregation was observed when CK was denatured at TFE concentrations between 10% and 40% (v/v). 50% TFE (v/v) was used to study the denaturation and unfolding of CK. The activity loss of CK was a very quick process, as was the marked conformational changes during denaturation followed by fluorescence emission spectra and far-ultraviolet CD spectra. DTNB modification and size exclusion chromatography were used to find that CK dissociated and was in its monomer state after denaturation with 50% TFE. Reactivation and refolding were observed after 80-fold dilution of the denatured CK into 0.05 M Tris-HCl buffer, pH 8.0. The denatured CK recovered about 38% activity following a two phase course (k(1)=4.82+/-0.41x10(-3) s(-1), k(2)=0.60+/-0.01x10(-3) s(-1)). Intrinsic fluorescence maximum intensity changes showed that the refolding process also followed biphasic kinetics (k(1)=4.34+/-0.27x10(-3) s(-1), k(2)=0.76+/-0.02x10(-3) s(-1)) after dilution into the proper solutions. The far-ultraviolet CD spectra ellipticity changes at 222 nm during the refolding process also showed a two phase course (k(1)=4.50+/-0.07x10(-3) s(-1), k(2)=1.13+/-0.05x10(-3) s(-1)). Our results suggest that TFE can be used as a reversible denaturant like urea and GuHCl. The 50% TFE induced CK denaturation state, which was referred to as the 'TFE state', and the partially refolded CK are compared with the molten globule state. The aggregation caused by TFE during denaturation is also discussed in this paper.  相似文献   

18.
A comparison of specific structural features of creatine kinase from rabbit muscle and brain was undertaken to determine if the observed isozyme specific differences in catalytic cooperativity are related to conformational differences, particularly differences in packing density. The intrinsic fluorescence of the brain isozyme is 2-fold higher than the muscle isozyme. In the denatured state, both proteins display the characteristic red shift in emission maximum; however, the emission intensity of the brain isozyme increases only 5% upon denaturation compared to nearly 100% increase for the muscle protein. The fluorescence lifetimes are 2.65 ns (67%) and 0.48 ns for native muscle enzyme and 4.38 ns (65%) and 0.80 ns for brain enzyme. Upon denaturation, the lifetimes are 3.98 ns (77%) and 0.99 ns for muscle protein and 3.82 ns (79%) and 0.86 ns for brain protein. Stern-Volmer plots of quenching by acrylamide are essentially the same for both native isozymes indicating that the differences of the intrinsic fluorescence of the native proteins are not due to differences in solvent accessibility. The spectral and lifetime differences in the isozymes in the native state and changes accompanying denaturation are consistent with the occurrence of energy transfer in native muscle isozyme. The rotational correlation times of 5-[2-(iodoacetyl)aminoethyl]aminonaphthalene-1-sulfonate conjugated proteins, derivatized at the active site reactive thiol, are best described by two term decay laws. The slower rotations, 45.1 ns (75%) and 40.6 ns (71%) reflect overall macromolecular rotation for the muscle and brain isozymes, respectively. The faster motions, 2.4 ns for muscle isozyme and 0.4 ns for the brain isozyme, are attributed to the probe or probe associated segmental motions and indicate these motions are more restricted in the muscle protein. Reactivity of creatine kinase (2.5-10 microM) with the amino-specific reagent trinitrobenzene sulfonate (0.4-2 mM) was analyzed by pseudo-first-order and second order models, neither of which was adequate for the entire range of data. However, in every case, the rate constants were faster for brain creatine kinase but the extent of reaction was greater for muscle creatine kinase. The faster initial reactivity of the brain isozyme is consistent with greater accessibility for lysine derivatization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Guo SY  Wang Z  Ni SW  Wang XC 《Biochimie》2003,85(10):999-1005
A mutant of dimeric rabbit muscle creatine kinase (CK), in which six residues (residues 2-7) at the N-terminal were removed by the PCR method, was studied to assess the role of these residues in dimer cohesion and to determine the structural stability of the protein. The specific activity of the mutant was 70.39% of that of the wild-type CK, and the affinity for Mg-ATP and CK substrates was slightly reduced compared with the wild-type protein. The structural stability of the mutant was investigated by a comparative equilibrium urea denaturation study and a thermal denaturation study. The data acquired by intrinsic fluorescence and far-UV circular dichroism (CD) during urea unfolding indicated that, the secondary and tertiary structures of the mutant were more stable than those of wild-type CK. Furthermore, results of 8-anilino-1-naphthalene-sulfonic acid (ANS) fluorescence demonstrated that the hydrophobic surface of the mutant CKND(6) was more stable during urea titration. Data from size exclusion chromatography (SEC) experiments indicated that deletion of the six N-terminal residues resulted in a relatively loose molecular structure, but the dissociation of the mutant CKND(6) occurred later during the unfolding process than for wild-type CK. Consistent with this result, the differential scanning calorimetry (DSC) profiles demonstrated that the thermal stability of the enzyme was increased by removal of the six N-terminal residues. We conclude that a more stable quaternary structure was obtained by deletion of the six residues from the N-terminal of wild-type CK.  相似文献   

20.
To examine the role of changes in the distribution of the creatine kinase (CK) isoenzymes [BB, MB, MM, and mitochondrial CK (mito-CK)] on the creatine kinase reaction velocity in the intact heart, we measured the creatine kinase reaction velocity and substrate concentrations in hearts from neonatal rabbits at different stages of development. Between 3 and 18 days postpartum, total creatine kinase activity did not change, but the isoenzyme distribution and total creatine content changed. Hearts containing 0, 4, or 9% mito-CK activity were studied at three levels of cardiac performance: KCl arrest and Langendorff and isovolumic beating. The creatine kinase reaction velocity in the direction of MgATP production was measured with 31P magnetization transfer under steady-state conditions. Substrate concentrations were measured with 31P NMR (ATP and creatine phosphate) and conventional biochemical analysis (creatine) or estimated (ADP) by assuming creatine kinase equilibrium. The rate of ATP synthesis by oxidative phosphorylation was estimated with oxygen consumption measurements. These results define three relationships. First, the creatine kinase reaction velocity increased as mito-CK activity increased, suggesting that isoenzyme localization can alter reaction velocity. Second, the reaction velocity increased as the rate of ATP synthesis increased. Third, as predicted by the rate equation, reaction velocity increased with the 3-fold increase in creatine and creatine phosphate contents that occurred during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号