首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Guanylyl cyclase C (GC-C) is a single-transmembrane receptor that is specifically activated by endogenous ligands, including guanylin, and the exogenous ligand, heat-stable enterotoxin. Using combined HPLC separation and MS analysis techniques the positions of the disulfide linkages in the extracellular ligand-binding domain (ECD) of GC-C were determined to be between Cys7–Cys94, Cys72–Cys77, Cys101–Cys128 and Cys179–Cys226. Furthermore, a three-dimensional structural model of the ECD was constructed by homology modeling, using the structure of the ECD of GC-A as a template (van den Akker et al., 2000, Nature, 406: 101–104) and the information of the disulfide linkages. Although the GC-C model was similar to the known structure of GC-A, importantly its ligand-binding site appears to be located on the quite different region from that in GC-A.  相似文献   

2.
The role of carbohydrate moieties at the N-linked glycosylation sites of guanylate cyclase C (GC-C), a receptor protein for guanylin, uroguanylin and heat-stable enterotoxin, in ligand binding and structural stability was examined using site-directed mutagenesis of the putative N-linked glycosylation sites in the extracellular domain (ECD) of porcine GC-C. For this purpose, eight mutant proteins of ECD (N9A, N20A, N56A, N172A, N261A, N284A, N334A and N379A) and six mutant proteins of the complete GC-C (N9A, S11A, N172A, T174A, N379A and T381A) were prepared, in which Ala replaced Asn, Ser and Thr at the N-linked glycosylation consensus sites. All the mutant proteins showed a ligand-binding affinity (K(d)) similar to those of the wild-type proteins, although the deletion of a carbohydrate moiety at each of the N-linked glycosylation sites affected the ligand-binding ability of ECD or GC-C to some degree. However, the mutant proteins of ECD (N379A) and GC-C (N379A and T381A) showed considerably decreased binding ability in the context of maximum capacity (B(max)) to a ligand, despite the fact that the expression levels of these mutant proteins were nearly the same as the wild-type proteins. Moreover, the mutant protein of ECD (N379A) was considerably less stable to a denaturant. These results clearly indicate a crucial role for the carbohydrate moiety at N379, which is located near the transmembrane region, in structural stability, the ability to bind to a ligand and the cyclase catalytic activity of GC-C, and provide a route for the elucidation of the mechanism of the interaction between GC-C and a ligand.  相似文献   

3.
Guanylyl cyclase C, one of the family of membrane-bound guanylyl cyclases, consists of an extracellular domain and an intracellular domain, which are connected by a single transmembrane polypeptide. The extracellular domain binds unique small polypeptides with high specificity, which include the endogenous peptide hormones, guanylin and uroguanylin, as well as an exogenous enterotoxigenic peptide, heat-stable enterotoxin, secreted by pathogenic Escherichia coli. Information on this specific binding is propagated into the intracellular domain, followed by the synthesis of cGMP, a second messenger that regulates a variety of intracellular physiological processes. This study reports the design of a photoaffinity labeled analog of heat-stable enterotoxin (biotinyl-(AC(5))(2)-[Gly(4), Pap(11)]STp(4-17)), which incorporates a Pap residue (p-azidophenylalanine) at position 11 and a biotin moiety at the N terminus, and the use of this analog to determine the ligand-binding region of the extracellular domain of guanylyl cyclase C. The endoproteinase Lys-C digestion of the extracellular domain, which was covalently labeled by this ligand, and mass spectrometric analyses of the digest revealed that the ligand specifically binds to the region (residue 387 to residue 393) of guanylyl cyclase C. This region is localized close to the transmembrane portion of guanylyl cyclase C on the external cellular surface. This result was further confirmed by characterization of site-directed mutants of guanylyl cyclase C in which each amino acid residue was substituted by an Ala residue instead of residues normally located in the region. This experiment provides the first direct demonstration of the ligand-binding site of guanylyl cyclase C and will contribute toward an understanding of the receptor recognition of a ligand and the modeling of the interaction of the receptor and its ligand at the molecular level.  相似文献   

4.
The heat-stable enterotoxin peptides (ST) produced by enterotoxigenic Escherichia coli are one of the major causes of transitory diarrhea in the developing world. Toxin binding to its receptor, guanylyl cyclase C (GC-C), results in receptor activation and the production of high intracellular levels of cGMP. GC-C is expressed in two differentially glycosylated forms in intestinal epithelial cells. Prolonged exposure of human colonic cell lines to ST peptides induces cellular refractoriness to the ST peptide, in terms of intracellular cGMP accumulation. We have investigated the mechanism of cellular desensitization in human colonic Caco2 cells, and observe that exposure of cells to ST leads to a time and dose-dependent inability of cells to respond to the peptide in terms of GC-C stimulation, both in whole cells and membranes prepared from desensitized cells. This is concomitant with a 50% reduction in ST-binding activity in desensitized cells. Desensitization was correlated with a loss of the plasma membrane-associated, hyperglycosylated 145 kDa form of GC-C, while the predominant 130 kDa form, localized both on the plasma membrane and the endoplasmic reticulum, continued to be present in ST-treated cells. Desensitized cells recovered ST-responsiveness on removal of the ST peptide, which was correlated with a reappearance of the 145 kDa form on the cell surface, following processing of the endoplasmic reticulum-associated pool of the 130 kDa form. Selective internalization of the 145 kDa form of the receptor was required for cellular desensitization, as ST-treatment of cells at 4 degrees C did not lead to refractoriness. We therefore show a novel means of regulation of cellular responsiveness to the ST peptide, whereby altering cellular levels of the differentially glycosylated forms of GC-C can lead to differential ligand-mediated activation of the receptor.  相似文献   

5.
ActR-IIA, ActR-IIB, and BMPR-II are low-affinity type II receptors that bind bone morphogenetic proteins (BMPs) in the same overall manner. The binding of BMPs by ActR-IIs has been analyzed structurally and functionally, but no detailed analysis of BMPR-II has been reported. The objective of this study was to determine ligand-binding epitopes and specificity determinants in two regions, the hydrophobic patch and the A-loop of the BMPR-II extracellular domain (ECD). A series of alanine-substituted variants was generated using a recently published X-ray structure of the unliganded form of the ovine BMPR-II ECD as a guide. These variants were characterized using one-dimensional NMR and functional activity assays with BMP-2, BMP-7 and GDF-5 as ligands. The results showed that alanine substitutions of conserved residues W85 and Y113 within the hydrophobic patch of the ECD differentially perturbed BMP ligand binding without disrupting receptor folding, suggesting that they are critical determinants for ligand binding and ligand specificity. Our results further revealed that the nonconserved residue L69 in the hydrophobic patch contributes to ligand-binding activity and specificity. Mutations of several residues within the A-loop resulted in minimal effects on the binding of the different BMP ligands. Overall, these observations identify several amino acid residues that play different roles in BMPR-II and ActR-II and thereby enable BMPR-II and ActR-IIs to bind different subclasses of BMP ligands.  相似文献   

6.
Stolt PC  Vardar D  Blacklow SC 《Biochemistry》2004,43(34):10979-10987
While typical intracellular protein modules have only one ligand-binding site, there are rare examples of single modules that bind two different ligands at distinct binding sites. Here we present a detailed mutational and energetic analysis of one such domain, the phosphotyrosine binding (PTB) domain of Disabled-1 (Dab1), which binds to both peptide and phosphoinositide (PI) ligands simultaneously at structurally distinct binding sites. Through the techniques of isothermal titration calorimetry (ITC), analysis of Dab1 PTB domain mutants, and nuclear magnetic resonance (NMR), we have evaluated the characteristics of binding of the Dab1 PTB domain to various peptide and PI ligands. These studies reveal that the presence of saturating concentrations of one ligand has little effect on the binding constant for a second ligand at the other site. In addition, proteins with single-point mutations in the peptide-binding site retain native affinity for PI ligands, while proteins with mutations that prevent PI binding retain native affinity for peptide. NMR titrations show that the final structure of the ternary complex is the same independent of the order of addition of the two ligands. Together, these studies show that binding of peptide and PI ligands is energetically independent and noncooperative.  相似文献   

7.
8.
Receptor guanylyl cyclases possess an extracellular ligand-binding domain, a single transmembrane region, a region with sequence similar to that of protein kinases, and a C-terminal guanylyl cyclase domain. ATP regulates the activity of guanylyl cyclase C (GC-C), the receptor for the guanylin and stable toxin family of peptides, presumably as a result of binding to the kinase homology domain (KHD). Modeling of the KHD of GC-C indicated that it could adopt a structure similar to that of tyrosine kinases, and sequence comparison with other protein kinases suggested that lysine(516) was positioned in the KHD to interact with ATP. A monoclonal antibody GCC:4D7, raised to the KHD of GC-C, did not recognize ATP-bound GC-C, and its epitope mapped to a region in the KHD of residues 491--568 of GC-C. Mutation of lysine(516) to an alanine in full-length GC-C (GC-C(K516A)) dramatically reduced the ligand-stimulated activity of mutant GC-C, altered the ATP-mediated effects observed with wild-type GC-C, and failed to react with the GCC:4D7 monoclonal antibody. ATP interaction with wild-type GC-C converted a high-molecular weight oligomer of GC-C to a smaller sized oligomer. In contrast, GC-C(K516A) did not exhibit an alteration in its oligomeric status on incubation with ATP. We therefore suggest that the KHD in receptor guanylyl cyclases provides a critical structural link between the extracellular domain and the catalytic domain in regulation of activity in this family of receptors, and the presence of K(516) is critical for the possible proper orientation of ATP in this domain.  相似文献   

9.
10.
11.
The human platelet alpha 2-adrenergic receptor is an integral membrane protein which binds epinephrine. The gene for this receptor has been cloned, and the primary structure is thus known [Kobilka et al. (1987) Science 238, 650-656]. A model of its secondary structure predicts that the receptor has seven transmembrane spanning domains. By covalent labeling and peptide mapping, we have identified a region of the receptor that is directly involved with ligand binding. Partially purified preparations of the receptor were covalently radiolabeled with either of two specific photoaffinity ligands: [3H]SKF 102229 (an antagonist) or p-azido[3H]clonidine (an agonist). The radiolabeled receptors were then digested with specific endopeptidases, and peptides containing the covalently bound radioligands were identified. Lysylendopeptidase treatment of [3H]SKF 102229 labeled receptor yielded one peptide of Mr 2400 as the product of a complete digest. Endopeptidase Arg-C gave a labeled peptide of Mr 4000, which was further digested to the Mr 2400 peptide by additional treatment with lysylendopeptidase. Using p-azido[3H]clonidine-labeled receptor, a similar Mr 2400 peptide was obtained by lysylendopeptidase cleavage. This Mr 2400 peptide corresponds to the fourth transmembrane spanning domain of the receptor. These data suggest that this region forms part of the ligand binding domain of the human platelet alpha 2-adrenergic receptor.  相似文献   

12.
Natural peptide agonists of corticotrophin-releasing factor (CRF) receptors bind to the receptor by a two-site mechanism as follows: the carboxyl end of the ligand binds the N-terminal extracellular domain (ECD) of the receptor and the amino portion of the ligand binds the extracellular face of the seven transmembrane region. Recently, peptide antagonists homologous to the 12 C-terminal residues of CRF have been derived, which bind the CRF(1) receptor through an interaction with the ECD. Here we characterized the binding of a minimal 12-residue peptide antagonist while bound to the isolated ECD of the CRF(1) receptor. We have expressed and purified soluble and properly folded ECD independent from the seven-transmembrane region as a thioredoxin fusion protein in Escherichia coli. A model of the peptide antagonist, cyclic corticotrophin-releasing factor residues 30-41 (cCRF(30-41)), was calculated while bound to the recombinant ECD using transferred nuclear Overhauser effect spectroscopy. Although the peptide is unstructured in solution, it adopts an alpha-helical conformation when bound to the ECD. Residues of cCRF(30-41) comprising the binding interface with the ECD were mapped using saturation transfer difference NMR. Two hydrophobic residues (Met(38) and Ile(41)) as well as two amide groups (Asn(34) and the C-terminal amide) on one face of the helix defined the binding epitope of the antagonist. This epitope may be used as a starting point for development of non-peptide antagonists targeting the ECD of this receptor.  相似文献   

13.
14.
Heat-stable enterotoxin (ST(a)) elaborated by E. coli is a major cause of diarrhea. The transmembrane protein guanylyl cyclase C (GC-C) is the acknowledged receptor for ST(a) and for the mammalian peptides guanylin and uroguanylin. Binding to GC-C results in generation of cGMP, activation of type II cGMP-dependent protein kinase, phosphorylation of CFTR and increased chloride and bicarbonate secretion. We had previously shown that ST(a) receptors (GC-C) are found on the brush border membranes of small intestinal enterocytes and of colonocytes. However, since it has subsequently been shown that the endogenous ligands for these receptors, guanylin and uroguanylin, circulate in blood, we proposed the existence of ST(a) binding sites on the basolateral membranes (BLM) of colonocytes. Specific binding of 125I-ST(a) to rat colonocyte BLM was seen. The kinetics of binding to the BLM were similar to binding to BBM. The nature of the BLM receptor is unknown. This suggests that circulating guanylin and uroguanylin, analogues of ST(a), may also function via the basolateral surface.  相似文献   

15.
The guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), also referred to as GC-A, is a single polypeptide molecule having a critical function in blood pressure regulation and cardiovascular homeostasis. GC-A/NPRA, which resides in the plasma membrane, consists of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular cytoplasmic region containing a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic domain. After binding with atrial and brain natriuretic peptides (ANP and BNP), GC-A/NPRA is internalized and sequestered into intracellular compartments. Therefore, GC-A/NPRA is a dynamic cellular macromolecule that traverses different subcellular compartments through its lifetime. This review describes the roles of short-signal sequences in the internalization, trafficking, and intracellular redistribution of GC-A/NPRA from cell surface to cell interior. Evidence indicates that, after internalization, the ligand–receptor complexes dissociate inside the cell and a population of GC-A/NPRA recycles back to the plasma membrane. Subsequently, the disassociated ligands are degraded in the lysosomes. However, a small percentage of the ligand escapes the lysosomal degradative pathway, and is released intact into culture medium. Using pharmacologic and molecular perturbants, emphasis has been placed on the cellular regulation and processing of ligand-bound GC-A/NPRA in terms of receptor trafficking and down-regulation in intact cells. The discussion is concluded by examining the functions of short-signal sequence motifs in the cellular life-cycle of GC-A/NPRA, including endocytosis, trafficking, metabolic processing, inactivation, and/or down-regulation in model cell systems.  相似文献   

16.
The human thromboxane A(2) (TP) receptor, a member of the G protein-coupled receptor superfamily, consists of seven transmembrane segments. Attempts to elucidate the specific segment(s) that define the receptor ligand-binding pocket have produced less than definitive and sometimes conflicting results. On this basis, the present work identified an amino acid sequence of the TP receptor that is directly involved in ligand binding. Mapping of this domain was confirmed by two separate approaches: photoaffinity labeling and site-specific antibodies. The newly synthesized, biotinylated photoaffinity probe, SQBAzide, was first shown to specifically label TP receptor protein. Sequential digestion of this protein with CNBr/trypsin revealed photolabeling of a 2.9-kDa peptide. Using anti-peptide antibodies directed against different regions of the receptor protein, it was established that this peptide represents the predicted cleavage product for CNBr/trypsin and corresponds to amino acids Arg(174)-Met(202) of the receptor protein. Furthermore, antibody screening revealed that inhibition of the amino acid region Cys(183)-Asp(193) was critical for radioligand binding and platelet aggregation, whereas inhibition of Gly(172)-Cys(183) was not. Collectively these findings provide evidence that ligands interact with amino acids contained within the C-terminal portion of the third extracellular domain (ED3) of the receptor protein. This information should be of significant value in the study of TP receptor structure and signaling.  相似文献   

17.
It is generally held with respect to heterotrimeric guanine nucleotide binding protein-coupled receptors that binding of ligand stabilizes a conformation of receptor that activates adenylyl cyclase. It is not formally appreciated if, in the case of G-protein-coupled receptors with large extracellular domains (ECDs), ECDs directly participate in the activation process. The large ECD of the glycoprotein hormone receptors (GPHRs) is 350 amino acids in length, composed of seven leucine-rich repeat domains, and necessary and sufficient for high affinity binding of the glycoprotein hormones. Peptide challenge experiments to identify regions in the follicle-stimulating hormone (FSH) receptor (FSHR) ECD that could bind its cognate ligand identified only a single synthetic peptide corresponding to residues 221-252, which replicated a leucine-rich repeat domain of the FSHR ECD and which had intrinsic activity. This peptide inhibited human FSH binding to the human FSHR (hFSHR) and also inhibited human FSH-induced signal transduction in Y-1 cells expressing recombinant hFSHR. The hFSHR-(221-252) domain was not accessible to anti-peptide antibody probes, suggesting that this domain resides at an interface between the hFSHR ECD and transmembrane domains. CD spectroscopy of the peptide in dodecyl phosphocholine micelles showed an increase in the ordered structure of the peptide. CD and NMR spectroscopies of the peptide in trifluoroethanol confirmed that hFSHR-(221-252) has the propensity to form ordered secondary structure. Importantly and consistent with the foregoing results, dodecyl phosphocholine induced a significant increase in the ordered secondary structure of the purified hFSHR ECD as well. These data provide biophysical evidence of the influence of environment on GPHR ECD subdomain secondary structure and identify a specific activation domain that can autologously modify GPHR activity.  相似文献   

18.
The ligand binding domain of the low density lipoprotein (LDL) receptor contains seven imperfect repeats of a 40-amino acid cysteine-rich sequence. Each repeat contains clustered negative charges that have been postulated as ligand-binding sites. The adjacent region of the protein, the growth factor homology region, contains three cysteine-rich repeats (A-C) whose sequence differs from those in the ligand binding domain. To dissect the contribution of these different cysteine-rich repeats to ligand binding, we used oligonucleotide-directed mutagenesis to alter expressible cDNAs for the human LDL receptor which were then introduced into monkey COS cells by transfection. We measured the ability of the mutant receptors to bind LDL, which contains a single protein ligand for the receptor (apoB-100), and beta-migrating very low density lipoprotein (beta-VLDL), which contains apoB-100 plus multiple copies of another ligand (apoE). The results show that repeat 1 is not required for binding of either ligand. Repeats 2 plus 3 and repeats 6 plus 7 are required for maximal binding of LDL, but not beta-VLDL. Repeat 5 is required for binding of both ligands. Repeat A in the growth factor homology region is required for binding of LDL, but not beta-VLDL. Repeat B is not required for ligand binding. These results support a model for the LDL receptor in which various repeats play additive roles in ligand binding, each repeat making a separate contribution to the binding event.  相似文献   

19.
The role of the kinase homology domain (KHD) in receptor guanylyl cyclases is to regulate the activity of the catalytic guanylyl cyclase domain. The KHD lacks many of the amino acids required for phosphotransfer activity and, therefore, is not expected to possess kinase activity. Guanylyl cyclase activity of the receptor guanylyl cyclase C (GC-C) is modulated by ATP, and computational modeling showed that the KHD can adopt a structure similar to protein kinases, suggesting that the KHD is the site for ATP interaction. A monoclonal antibody, GCC:4D7, raised to the KHD of GC-C, fails to react with GC-C in the presence of ATP and ATP analogues that regulate GC-C catalytic activity, indicating that a conformational change occurs in the KHD on ATP binding. Mapping of the epitope of the antibody through the use of recombinant protein constructs and phage display showed that the epitope for GC-C:4D7 lies immediately C-terminal to a critical lysine residue (Lys516 in GC-C), required for ATP interaction in protein kinases. By employing a novel approach utilizing ATP-agarose affinity chromatography, we demonstrate that the intracellular domain of GC-C and the KHD bind ATP. Mutation of Lys516 to Ala abolishes ATP binding. Thus, this report is the first to show direct ATP binding to the pseudokinase domain of receptor guanylyl cyclase C, as well as to identify dramatic conformational changes that occur in this domain on ATP binding, akin to those seen in catalytically active protein kinases.  相似文献   

20.
Guanylyl cyclase C (GC-C), the receptor for guanylin, uroguanylin, and the heat-stable enterotoxin, regulates fluid balance in the intestine and extraintestinal tissues. The receptor has an extracellular domain, a single transmembrane spanning domain, and an intracellular domain that harbors a region homologous to protein kinases, followed by the C-terminal guanylyl cyclase domain. Adenine nucleotides can regulate the guanylyl cyclase activity of GC-C by binding to the intracellular kinase homology domain (KHD). In this study, we have tested the effect of several protein kinase inhibitors on GC-C activity and find that the tyrphostins, known to be tyrosine kinase inhibitors, could inhibit GC-C activity in vitro. Tyrphostin A25 (AG82) was the most potent inhibitor with an IC(50) of approximately 15 microM. The mechanism of inhibition was found to be noncompetitive with respect to both the substrate MnGTP and the metal cofactor. Interestingly, the activity of the catalytic domain of GC-C (lacking the KHD) expressed in insect cells was also inhibited by tyrphostin A25 with an IC(50) of approximately 5 microM. As with the full-length receptor, inhibition was found to be noncompetitive with respect to MnGTP. Inhibition was reversible, ruling out a covalent modification of the receptor. Structurally similar proteins such as the soluble guanylyl cyclase and the adenylyl cyclases were also inhibited by tyrphostin A25. Evaluation of a number of tyrphostins allowed us to identify the requirement of two vicinal hydroxyl groups in the tyrphostin for effective inhibition of cyclase activity. Therefore, our studies are the first to report that nucleotide cyclases are inhibited by tyrphostins and suggest that novel inhibitors based on the tyrphostin scaffold can be developed, which could aid in a greater understanding of nucleotide cyclase structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号