首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presumptive evidence suggests that the brown fat mitochondrial uncoupling protein, thermogenin, is involved in the mechanism of stimulation of respiration by norepinephrine in the intact tissue. Conflicting data have been reported which suggest involvement of either adenine nucleotides, or fatty acids, or long chain acyl-CoA, or protons in the physiological regulation. We measured the electrical potential gradient across the mitochondrial membrane (delta psi m) in control cells and in cells stimulated with norepinephrine, using the accumulation of lipophilic cation, tetraphenylphosphonium, as an indicator of the potential gradient. The value of delta psi m in the cells in the control state is 116 mV, and in the hormonally stimulated state it is 56.6 mV. This supports the view that the protein is involved in the mechanism of hormone action. Other studies were designed to distinguish between the effects of fatty acids and ATP levels on the uncoupling protein in isolated mitochondria and in the adipocytes. ATP levels and fatty acid levels inside intact cells were independently varied using oligomycin or external fatty acids. Their effect on thermogenin was monitored as the capacity of the cells for reverse electron transport from durohydroquinone. The results suggest that ATP modulates the activity of thermogenin, while fatty acids can alter the relationship between ATP and thermogenin activity such that the protein appears to be activated at a higher cellular ATP level in the presence of fatty acids than in their absence.  相似文献   

2.
In liver mitochondria fatty acids act as protonophoric uncouplers mainly with participation of internal membrane protein carriers — ADP/ATP and aspartate/glutamate antiporters. In this study the values of recoupling effects of carboxyatractylate and glutamate (or aspartate) were used to assess the degree of participation of ADP/ATP and aspartate/glutamate antiporters in uncoupling activity of fatty acids. These values were determined from the ability of these recoupling agents to suppress the respiration stimulated by fatty acids and to raise the membrane potential reduced by fatty acids. Increase in palmitic and lauric acid concentration was shown to increase the degree of participation of ADP/ATP antiporter and to decrease the degree of participation of aspartate/glutamate antiporter in uncoupling to the same extent. These data suggest that fatty acids are not only inducers of uncoupling of oxidative phosphorylation, but that they also act the regulators of this process. The linear dependence of carboxyatractylate and glutamate recoupling effects ratio on palmitic and lauric acids concentration was established. Comparison of the effects of fatty acids (palmitic, myristic, lauric, capric, and caprylic having 16, 14, 12, 10, and 8 carbon atoms, respectively) has shown that, as the hydrophobicity of fatty acids decreases, the effectiveness decreases to a greater degree than the respective values of their specific uncoupling activity. The action of fatty acids as regulators of uncoupling is supposed to consist of activation of transport of their anions from the internal to the external monolayer of the internal membrane with participation of ADP/ATP antiporter and, at the same time, in inhibition of this process with the participation of aspartate/glutamate antiporter.  相似文献   

3.
It has been found that the protonophoric specific uncoupling activity of palmitic acid in rat liver mitochondria does not change as its concentration increases from 5 to 40 microM. Under these conditions, the component of the specific uncoupling activity, which describes the participation in uncoupling of the ADP/ATP antiporter (sensitive to carboxyatractylate), increases, and the component of specific uncoupling activity, which characterizes the participation in the uncoupling of the aspartate/glutamate antiporter (sensitive to glutamate), decreases by the same value. A kinetic model of the fatty acid-induced uncoupling activity with the participation of ADP/ATP and aspartate/glutamate antiporters has been developed. According to the model, these carriers can exist in two forms: an active, i.e., participating in the uncoupling, and an inactive. The interaction of a fatty acid with the regulator site of the ADP/ATP antiporter translates it from the inactive to the active form, while the interaction of a fatty acid with the regulator site of the aspartate/glutamate antiporter, on the contrary, translates it from the active form to inactive. The velocity of transport of a fatty acid anion by the antiporter from the internal monolayer of the internal membrane to the external monolayer is proportional to the product of the concentration of the fatty acid and the active form of this carrier. A good conformity of the model to experimentally obtained data is shown provided that (a) ADP/ATP and aspartate/glutamate antiporters, being completely in an active state, transfer fatty acid anions with the same velocity; (b) the equilibrium dissociation constants of a complex of the carrier with the fatty acid in these antiporters are equal.  相似文献   

4.
It has been found that the protonophoric specific uncoupling activity of palmitic acid in rat liver mitochondria does not change as its concentration increases from 5 to 40 μM. Under these conditions, the component of the specific uncoupling activity that describes the participation in uncoupling of the ADP/ATP antiporter (sensitive to carboxyatractylate) increases, and the component of specific uncoupling activity that characterizes the participation in the uncoupling of the aspartate/glutamate antiporter (sensitive to glutamate) decreases by the same value. A kinetic model of the fatty acid-induced uncoupling activity with the participation of ADP/ATP and aspartate/glutamate antiporters has been developed. According to the model, these carriers can exist in two forms: active, i.e., participating in the uncoupling, and inactive. The interaction of a fatty acid with the regulator site of the ADP/ATP antiporter translates it from the inactive to the active form, while the interaction of a fatty acid with the regulator site of the aspartate/glutamate antiporter, on the contrary, translates it from the active form to inactive. The velocity of transport of a fatty acid anion by the antiporter from the internal monolayer of the inner membrane to the external monolayer is proportional to the product of the concentration of the fatty acid and the active form of this carrier. A good conformity of the model to experimentally obtained data is shown provided that (a) ADP/ATP and aspartate/glutamate antiporters, being completely in active state, transfer fatty acid anions with the same velocity; (b) the equilibrium dissociation constants of a complex of the carrier with the fatty acid in these antiporters are equal.  相似文献   

5.
The effect of ATP/ADP-antiporter inhibitors on palmitate-induced uncoupling was studied in heart muscle mitochondria and inside-out submitochondrial particles. In both systems palmitate is found to decrease the respiration-generated membrane potential. In mitochondria, this effect is specifically abolished by carboxyatractylate (CAtr) a non-penetrating inhibitor of antiporter. In submitochondrial particles, CAtr does not abolish the palmitate-induced potential decrease. At the same time, bongkrekic acid, a penetrating inhibitor of the antiporter, suppresses the palmitate effect on the potential both in mitochondria and particles. Palmitoyl-CoA which is known to inhibit the antiporter in mitochondria as well as in particles decreases the palmitate uncoupling efficiency in both these systems. These data are in agreement with the hypothesis that the ATP/ADP-antiporter is involved in the action of free fatty acids as natural uncouplers of oxidative phosphorylation.  相似文献   

6.
The activity of free saturated fatty acids (caprylic, capric, lauric, myristic, palmitic and stearic) as inducers and regulators of uncoupling of oxidative phosphorylation with participation of ADP/ATP antiporter, aspartate/glutamate antiporter and cyclosporin A-sensitive structure was investigated in experiments on rat liver mitochondria. It is established that at equal uncoupling activity of fatty acids the regulatory effect is minimal for caprylic acid and raised with increasing the hydrophobicity of fatty acids reaching the maximum value for stearic acid. There exists the linear dependence of the regulatory effect value of fatty acids on fatty acids content in the hydrophobic region of the inner membrane. The model that describes the interaction of fatty acids with the hydrophobic region of the mitochondrial inner membrane preserving functional activity of organelles is developed. It is established that if molecules of various fatty acids being in the hydrophobic region of the membrane are equally effective as uncoupling regulators, their specific uncoupling activity is different. Caprylic acid, a short-chain fatty acid, possesses the highest uncoupling activity. As the acyl chain length increases, the specific uncoupling activity of fatty acids reduces exponentially. Under these conditions components of the uncoupling activity sensitive to glutamate and carboxyatractylate and glutamate and insensitive to these reagents (but sensitive to cyclosporin A) change approximately equally.  相似文献   

7.
The effect of acetoacetate on palmitate-induced uncoupling with the involvement of ADP/ATP antiporter and aspartate/glutamate antiporter has been studied in liver mitochondria. The incubation of mitochondria with acetoacetate during succinate oxidation in the presence of rotenone, oligomycin, and EGTA suppresses the accumulation of conjugated dienes. This is considered as a display of antioxidant effect of acetoacetate. Under these conditions, acetoacetate does not influence the respiration of mitochondria in the absence or presence of palmitate but eliminates the ability of carboxyatractylate or aspartate separately to suppress the uncoupling effect of this fatty acid. The action of acetoacetate is eliminated by β-hydroxybutyrate or thiourea, but not by the antioxidant Trolox. In the absence of acetoacetate, the palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter); in its presence, it is limited by a stage insensitive to the effect of these agents. In the presence of Trolox, ADP suppresses the uncoupling action of palmitate to the same degree as carboxyatractylate. Under these conditions, acetoacetate eliminates the recoupling effects of ADP and aspartate, including their joint action. This effect of acetoacetate is eliminated by β-hydroxybutyrate or thiourea. It is supposed that the stimulating effect of acetoacetate is caused both by increase in the rate of transfer of fatty acid anion from the inner monolayer of the membrane to the outer one, which involves the ADP/ATP antiporter and aspartate/glutamate antiporter, and by elimination of the ability of ADP to inhibit this transport. Under conditions of excessive production of reactive oxygen species in mitochondria at a high membrane potential and in the presence of small amounts of fatty acids, such effect of acetoacetate can be considered as one of the mechanisms of antioxidant protection.  相似文献   

8.
In liver mitochondria, the phosphate carrier is involved in protonophoric uncoupling effect of fatty acids together with ADP/ATP and aspartate/glutamate antiporters (Samartsev et al. 2003. Biochemistry (Moscow). 68, 618–629). Liver mitochondria depleted of endogenous oxidation substrates (exhausted mitochondria) have been used in the present work. In these mitochondria, like in the intact liver mitochondria, the specific inhibitor of ADP/ATP antiporter (carboxyatractylate) and the substrate of aspartate/glutamate antiporter (aspartate) suppress the uncoupling activity of palmitic acid. It is shown that in exhausted mitochondria the substrate of phosphate carrier (inorganic phosphate) and its nonspecific inhibitor mersalyl partially suppress palmitic acid-induced uncoupling due to decrease in the component of uncoupling activity sensitive to carboxyatractylate and aspartate. In the presence of inorganic phosphate or mersalyl, carboxyatractylate and aspartate added separately subsequent to palmitic acid do not suppress its uncoupling activity. They are effective only when added jointly. In the presence of thiourea or pyruvate, such effects of inorganic phosphate and mersalyl are not observed. It is supposed that in the presence of inorganic phosphate or mersalyl and under the condition of oxidation of critical SH-groups in mitochondria, the phosphate carrier, ADP/ATP antiporter, and aspartate/glutamate antiporter are involved in uncoupling function together with the general fatty acid pool as an uncoupling complex. The role of phosphate carrier in this complex may consist in facilitation of lateral transfer of the fatty acid molecules from one antiporter to another.  相似文献   

9.
The mechanism of uncoupling by lauryl sulfate (LS) has been studied. The very fact that uncoupling by low concentration of LS (a strong acid) resembles very much that by fatty acids (weak acids) was used as an argument against the fatty acid cycling scheme of uncoupling where protonated fatty acids operate as a protonophore. We have found that rat liver and heart muscle mitochondria can be uncoupled by low (70 microM) LS concentration in a fashion completely arrested by the ATP/ADP antiporter inhibitor carboxyatractylate (CAtr). On the other hand, uncoupling by two-fold higher LS concentration is not sensitive to CAtr. Addition of oleate desensitizes mitochondria to low LS so that addition of bovine serum albumin becomes necessary to recouple mitochondria. The data are accounted for assuming that low LS releases endogenous fatty acids from some mitochondrial depots, and these fatty acids are responsible for uncoupling. As to high LS, it causes a nonspecific (CAtr-insensitive) damage to the mitochondrial membrane.  相似文献   

10.
Study of the uncoupling effect of various saturated fatty acids (from caprylic to palmitic) revealed that the glutamate recoupling effect was more pronounced in the case of short chain fatty acids, whereas recoupling of mitochondria by carboxyatractylate was more effective in the case of long chain fatty acids. The overall recoupling effect, however, did not depend on the fatty acid chain length. Besides carboxyatractylate, glutamate and aspartate also exhibited a recoupling effect under uncoupling by lauryl sulfate. The uncoupling effect of lauryl sulfate was markedly weaker in the presence of DNP or laurate (but not FCCP) which were added in concentrations causing twofold increase in mitochondrial respiration. In the presence of lauryl sulfate the uncoupling action of laurate and DNP was insensitive to carboxyatractylate and glutamate. With laurate and DNP as uncouplers increasing the pH from 7.0 to 7.8 potentiated the recoupling effect of carboxyatractylate and attenuated the recoupling effect of glutamate. In the case of uncoupling by lauryl sulfate similar changes in the recoupling effect of carboxyatractylate and glutamate were observed only in the presence of 10 microM tetraphenylphosphonium. Thus, when uncoupling is induced by fatty acids, DNP, and lauryl sulfate, the ADP/ATP and aspartate/glutamate antiporters function as two parallel and independent pathways for mitochondrial membrane potential dissipation. We suggest that the role of the ADP/ATP antiporter in uncoupling includes proton capture from the intermembrane space with subsequent protonation of uncoupler anions, their transport as neutral molecules on the internal side, and deprotonation followed by proton release into the matrix and transfer of the uncoupler anion in the reverse direction. During uncoupling the aspartate/glutamate antiporter cyclically carries the uncoupler anion with simultaneous proton transfer from the intermembrane space into the matrix.  相似文献   

11.
This paper considers stages of the search (initiated by V. P. Skulachev) for a receptor protein for fatty acids that is involved in their uncoupling effect. Based on these studies, mechanism of the ADP/ATP antiporter involvement in the uncoupling induced by fatty acids was proposed (Skulachev, V. P. (1991) FEBS Lett., 294, 158– 162). New data (suppression by carboxyatractylate of the SDS-induced uncoupling, pH-dependence of the ADP/ATP and the glutamate/aspartate antiporter contributions to the uncoupling, etc.) led to modification of this hypothesis. During discussion of the uncoupling effect of fatty acids caused by opening of the Ca2+-dependent pore, special attention is given to the effects of carboxyatractylate added in the presence of ADP. The functioning of the uncoupling protein UCP2 in kidney mitochondria is considered, as well as the diversity observed by us in effects of 200 µM GDP on decrease in under the influence of oleic acid added after H2O2 (in the presence of succinate, oligomycin, malonate). A speculative explanation of the findings is as follows: 1) products of lipid and/or fatty acid peroxidation (PPO)modify the ADP/ATP antiporter in such a way that its involvement in the fatty acid-induced uncoupling is suppressed by GDP; 2) GDP increases the PPO concentration in the matrix by suppression of efflux of fatty acid hydroperoxide anions through the UCP (Goglia, F., and Skulachev, V. P. (2003) FASEB, 17, 1585–1591)and/or of efflux of PPO anions with involvement of the GDP-sensitive ADP/ATP antiporter; 3) PPO can potentiate the oleate-induced decrease in due to inhibition of succinate oxidation.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 197–202.Original Russian Text Copyright © 2005 by Mokhova, Khailova.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

12.
Data are raeviewed on mitochondrial systems whose functioning in plants diminishes the efficiency of oxidative phosphorylation. The involvement in this process of alternative oxidase, thermogenin-like uncoupling proteins, a 310 kD stress protein, free fatty acids, and the ADP/ATP antiporter is considered. The role of these systems is discussed with regard to thermogenesis, controlled production of reactive oxygen species, and regulation of bioenergetics and metabolism.  相似文献   

13.
The influence of the positively charged amphiphilic compound cetyltrimethyl ammonium bromide (CTAB) on palmitate- and laurate-induced uncoupling and on carboxyatractylate and glutamate recoupling effects in liver mitochondria have been studied. CTAB (40 M) in the presence of 3 mM MgCl2 had little (if any) effect on the palmitic acid-stimulated respiration of mitochondria; the glutamate recoupling effect increased, and the carboxyatractylate recoupling effect decreased to the same degree with the combined effect (about 80%) remaining unchanged. Thus, CTAB decreases the ADP/ATP antiporter involvement and increases to the same extent the aspartate/glutamate antiporter involvement in the fatty acid-induced uncoupling. The carboxyatractylate and glutamate recoupling effects were less pH dependent in the presence of CTAB than in its absence. These data could be interpreted with the assumption that fatty acid anions are more accessible to the ADP/ATP antiporter and their neutral forms are more accessible to the aspartate/glutamate antiporter, and that CTAB changes the relative anion carrier involvement in the fatty acid-induced uncoupling as it forms neutral complexes with fatty acid anions.  相似文献   

14.
In order to investigate the possible existence of a ‘masked’ (i.e. non-GDP-binding) form of thermogenin (the brown-adipose-tissue specific, 32 000 Da so-called “uncoupling” protein), rats were fed a routine pellet diet or, in addition to this, a cafeteria diet. Brown-adipose-tissue mitochondria isolated from the cafeteria-fed animals showed as expected an increased (3H)GDP binding capacity (from 0.26 to 0.41 nmol/mg protein; an increase of 57%). However, when analysed by a quantitative enzyme-linked immuno-assay system for thermogenin, the mitochondria also showed an increased content of thermogenin (from 14.9 to 20.5 μg per mg; an increase of 38%). The ratio between thermogenin and GDP binding was 61 000 and 53 000 g/mol in the two cases; these values were not significantly different and were in good agreement with suggestions that thermogenin binds 1 GDP per thermogenin dimer. It was concluded that under the conditions investigated, there was no reason to assume the existence of a masked form of thermogenin.  相似文献   

15.
Carboxyatractylate inhibits the uncoupling effect of free fatty acids   总被引:2,自引:0,他引:2  
The ATP/ADP-antiporter inhibitors and ADP decrease the palmitate-induced stimulation of the mitochondrial respiration in the controlled state. The degree of inhibition decreases in the order: carboxyatractylate greater than bongkrekic acid, palmitoyl-CoA, ADP greater than atractylate. GDP is ineffective. The inhibiting concentration of carboxyatractylate coincides with this arresting the state 3 respiration. Carboxyatractylate inhibition decreases when the palmitate concentration increases. Stimulation of controlled respiration by FCCP or gramicidin D at any concentration of these uncouplers is carboxyatractylate-resistant, whereas that by low concentrations of DNP is partially suppressed by carboxyatractylate. These data together with observations that palmitate does not increase H+ conductance in bilayer phospholipid membranes and in cytochrome oxidase-asolectin proteoliposomes indicate that the ATP/ADP-antiporter is somehow involved in the uncoupling by low concentrations of fatty acids (or DNP), whereas that by FCCP and gramicidin D is due to their effect on the phospholipid bilayer. It is suggested that the antiporter facilitates translocation of palmitate anion across the mitochondrial membrane.  相似文献   

16.
Eosin-5-maleimide is impermeable to the inner mitochondrial membrane, exhibiting essentially no reactivity with matrix glutathione or with beta-hydroxybutyrate dehydrogenase located on the matrix surface of the inner membrane. In intact mitochondria, eosin-5-maleimide is unreactive with the ADP/ATP antiporter even under conditions which promote maximal labeling by N-[3H]ethylmaleimide (i.e., ADP present). However, eosin-5-maleimide readily labels the ADP/ATP antiporter in "inverted" inner membrane vesicles even in the presence of N-ethylmaleimide. Labeling is prevented if the vesicles are prepared from mitochondria pretreated with carboxyatractyloside. In contrast to the ADP/ATP antiporter, essential sulfhydryl groups of the Pi/H+ symporter are accessible to eosin-5-maleimide in intact mitochondria with optimal inhibition of phosphate transport being observed at 25 degrees C. Eosin-5-maleimide also prevents labeling of the Pi/H+ symporter by N-[3H]ethylmaleimide. These results show that essential sulfhydryl groups of the ADP/ATP antiporter and the Pi/H+ symporter have differing reactivities and locations in functionally intact mitochondria. With respect to eosin-5-maleimide, sulfhydryl groups of the ADP/ATP carrier occur in two distinct classes, both of which are inaccessible in intact mitochondria. Only one class, depending on conditions, can be exposed in submitochondrial particles. In contrast, sulfhydryl group(s) of the Pi/H+ symporter behave as a single reactive class which is readily accessible in mitochondria at 25 degrees C.  相似文献   

17.
The Na-H antiporter of renal-brush border membranes is inhibited by cyclic AMP and stimulated by protein kinase C. The proximal tubule contains guanylate cyclase and is capable of cyclic GMP production. The effect of cGMP on renal Na-H antiporter activity was analyzed in phosphorylated brush border membranes by 22Na uptake in the presence or absence of 1 mM amiloride. 8-Bromo cyclic GMP (1 microM) increased the amiloride-sensitive 22Na uptake in control from 1.26 +/- 0.13 to 1.54 +/- 0.12 nmol/mg/protein/10 sec, P less than 0.01, without altering the amiloride-insensitive component. In the absence of exogenous ATP, cGMP also stimulated the amiloride-sensitive 22Na uptake, which can be explained by the presence of endogenous ATP in concentrations of up to 50 microM in the membranes. In ATP-depleted membrane vesicles, however, cGMP inhibited the amiloride-sensitive 22Na uptake. These data indicate that cGMP acts on the Na-H antiporter by at least two different mechanisms, one of which is ATP dependent. It is likely that cGMP-dependent protein kinase mediates the stimulatory effects seen in the presence of ATP, and the inhibition seen in ATP-depleted membranes results from cGMP direct action on the Na-H antiporter.  相似文献   

18.
Fatty acid composition of the membrane lipids in the mesophilic cyanobacterium Synechocystis sp. PCC 6803 was altered in earlier work by targeted mutagenesis of genes for fatty acid desaturases. In this work, cells of several mutant strains, depleted in the unsaturated fatty acids in membrane lipids, were grown at 34 degrees C. Spheroplasts (permeabilized cells) were prepared by lysozyme digestion of the cell wall followed by gentle osmotic shock. The bioenergetic parameters ATP formation, electron transport, and H+ uptake were measured at various temperatures. All three bioenergetic parameters for spheroplasts from wild-type cells (which had abundant polyunsaturated fatty acids) were active down to the lowest temperatures used (1 degrees - 2 degrees C). In two strains, which lacked the capacity to desaturate fatty acids at the A 12 position and at the A 12 and A6 positions (designated as desA- and desA-/desD-, respectively), the spheroplasts lost the capacity to form ATP (measured as phenazine methosulfate cyclic phosphorylation) at about 5 degrees C but retained electron transport (water oxidation-dependent ferricyanide reduction) and H+ uptake linked to phenazine methosulfate cyclic electron transport. It appears that the absence of the unsaturation of fatty acids in the A 12 and A6 positions blocks the ability of the photosynthetic membranes to couple a bioenergetically competent proton-motive force to the ATP formation mechanism at temperatures below 5 degrees C. It remains to be determined whether the loss of ATP formation in the mutant strains is the failure of available protons to properly flow into the CF0CF1-ATP synthase or a failure in the CF1 part of the complex in coupling the dissipative H+ flow to the enzyme mechanism of the synthase.  相似文献   

19.
Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.  相似文献   

20.
Plastids isolated from developing leaves and embryos of oilseed rape (Brassica napus L.) were incubated with substrates in the light or the dark, with or without exogenous ATP. Incorporation of HCO-3, and carbon from a range of substrates into fatty acids and/or starch by leaf chloroplasts was absolutely light-dependent and was unaffected by provision of ATP. Incorporation of HCO-3 into fatty acids and/or starch by embryo plastids was also light-dependent. However, the light-dependent rates attained, when expressed on a comparable basis, were less than 32% of those from Glc6P (plus ATP), which was the most effective substrate for starch and fatty acid synthesis. In the light alone the rates of carbon incorporation from Glc6P, pyruvate and acetate into fatty acids, and from Glc6P into starch by embryo plastids were less than 27% of the respective ATP-dependent (dark) rates. Light had no effect on these ATP-dependent rates of synthesis by embryo plastids. While transporter activities for both glucose and Glc6P were present in embryo plastids, leaf chloroplasts did not have the latter activity. It is concluded that light at in vivo levels can contribute energy to carbon metabolism in embryo plastids. However, this contribution is likely to be small and these plastids are therefore largely dependent upon interaction with the cytosol for the ATP, reducing power and carbon precursors that are required for maximal rates of starch and fatty acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号