首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of raising cockroaches, Leucophaea maderae, in non-24-h light cycles on the response of the circadian system to light was examined. 1. Phase response curves (PRC) were measured for 6-h light pulses for animals raised in LD 11:11 (T22), LD 12:12 (T24), and LD 13:13 (T26). The delay portion of the PRC was found to be significantly reduced in T22 animals (compared to T24 animals) while the advance portion of the PRC was reduced in T26 animals. Compared to T26 animals, phase shifts were more positive at every phase for animals raised in T22. 2. When transferred from constant darkness (DD) to constant light (LL) the freerunning period lengthened significantly less for T22 animals than T24 animals, and in some cases tau in LL was actually shorter than tau in DD in T22 animals. Animals raised in LL were inactive when exposed to LL as adults, and unlike T24 animals, were consistently reset to the beginning of the subjective night (near CT 12) when transferred to DD. 3. Roaches raised in T22 would entrain to LD 6:18, but a few animals exhibited periods of relative coordination indicating that the 24-h light cycle was near the limits of entrainment. These results indicate that the circadian system's responsiveness to light, as well as its freerunning period (Barrett and Page 1989), is dependent on the lighting conditions to which the animals are exposed during development.  相似文献   

2.
The eclosion and oviposition rhythms of flies from a population of Drosophila melanogaster maintained under constant conditions of the laboratory were assayed under constant light (LL), constant darkness (DD), and light/dark (LD) cycles of 10:10h (T20), 12:12h (T24), and 14:14h (T28). The mean (+/- 95% confidence interval; CI) free-running period (tau) of the oviposition rhythm was 26.34 +/- 1.04h and 24.50 +/- 1.77h in DD and LL, respectively. The eclosion rhythm showed a tau of 23.33 +/- 0.63 h (mean +/- 95% CI) in DD, and eclosion was not rhythmic in LL. The tau of the oviposition rhythm in DD was significantly greater than that of the eclosion rhythm. The eclosion rhythm of all 10 replicate vials entrained to the three periodic light regimes, T20, T24, and T28, whereas the oviposition rhythm of only about 24 and 41% of the individuals entrained to T20 and T24 regimes, respectively, while about 74% of the individuals assayed in T28 regimes showed entrainment. Our results thus clearly indicate that the tau and the limits of entrainment of eclosion rhythm are different from those of the oviposition rhythm, and hence this reinforces the view that separate oscillators may regulate these two rhythms in D. melanogaster.  相似文献   

3.
The effects of hypothalamic lesioning and removal of the eyes on locomotor activity rhythms of African clawed frog, Xenopus laevis were examined under light-dark cycles (LD12:12) and constant conditions. Frogs were kept individually and the activity rhythms at the bottom layer of water tank were recorded by means of the infrared photocells. Intact frogs displayed clear entrained nocturnal activity and expressed freerunning activity rhythms in constant darkness (DD), while some frogs did not freerun under co nstant dim light (dimLL) and constant light (LL). Freerunning periods in intact frogs were significantly shorter in dimLL than in DD. Although freerunning periods were shortened after blinding in same individuals, no significant changes in the freerunning periods were observed after blinding under dimLL and LL. When electrolytic lesions to the hypothalamus were performed, all frogs with more than 70% damage of the SCN abolished freerunning rhythms and in frogs with less than 70% damage, 57% of the animals became arrhythmic. In conclusion, (1) There is a circadian pacemaker somewhere outside the eyes, and it is probably situated in the hypothalamusincluding the SCN. (2) Both the eyes and the SCN are involved in the circadian system of the frogs.  相似文献   

4.
The effects of hypothalamic lesioning and removal of the eyes on locomotor activity rhythms of African clawed frog, Xenopus laevis were examined under light-dark cycles (LD12:12) and constant conditions. Frogs were kept individually and the activity rhythms at the bottom layer of water tank were recorded by means of the infrared photocells. Intact frogs displayed clear entrained nocturnal activity and expressed freerunning activity rhythms in constant darkness (DD), while some frogs did not freerun under co nstant dim light (dimLL) and constant light (LL). Freerunning periods in intact frogs were significantly shorter in dimLL than in DD. Although freerunning periods were shortened after blinding in same individuals, no significant changes in the freerunning periods were observed after blinding under dimLL and LL. When electrolytic lesions to the hypothalamus were performed, all frogs with more than 70% damage of the SCN abolished freerunning rhythms and in frogs with less than 70% damage, 57% of the animals became arrhythmic. In conclusion, (1) There is a circadian pacemaker somewhere outside the eyes, and it is probably situated in the hypothalamusincluding the SCN. (2) Both the eyes and the SCN are involved in the circadian system of the frogs.  相似文献   

5.
ABSTRACT. Effects of early post-embryonic development and ageing on the circadian rhythm of locomotor activity in the cockroach, Leucophaea maderae , were investigated. Cockroach nymphs (first to fourth instars) were found to exhibit a circadian rhythm of activity generally similar to that of adults, but there appeared to be a significant change in pacemaker period (τ) early in nymphal development, and nymphs exhibited regular fluctuations in activity level which may be related to the moulting cycle. Mean τ of adults was remarkably stable with age – no significant change was found in either males or females throughout the life span of the adult. There was, however, a small but significant difference between the average period (τ) of adult males (τ= 23.72 ± 0.12h) and adult females (τ= 23.84 ± 0.13 h). Lighting conditions during post-embryonic development were found to have major effects on τ of adults. Males raised in constant darkness had a significantly shorter period (τ= 23.52 ± 0.11 h) than males raised in LD 12:12, and adult males and females which had been raised in non-24-h light cycles (T = 22 h or 26 h) exhibited major differences in τ from animals raised in LD 12:12 which persisted for several months. Animals exposed as adults to non-24-h light cycles also showed 'after-effects' on τ, but the magnitude of the effect was much less than that exhibited by animals exposed as nymphs.  相似文献   

6.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

7.
Arctic and subarctic environments are exposed to extreme light: dark (LD) regimes, including periods of constant light (LL) and constant dark (DD) and large daily changes in day length, but very little is known about circadian rhythms of mammals at high latitudes. The authors investigated the circadian rhythms of a subarctic population of northern red-backed voles (Clethrionomys rutilus). Both wild-caught and third-generation laboratory-bred animals showed predominantly nocturnal patterns of wheel running when exposed to a 16:8 LD cycle. In LL and DD conditions, animals displayed large phenotypic variation in circadian rhythms. Compared to wheel-running rhythms under a 16:8 LD cycle, the robustness of circadian activity rhythms decreased among all animals tested in LL and DD (i.e., decreased chi-squared periodogram waveform amplitude). A large segment of the population became noncircadian (60% in DD, 72% in LL) within 8 weeks of exposure to constant lighting conditions, of which the majority became ultradian, with a few individuals becoming arrhythmic, indicating highly labile circadian organization. Wild-caught and laboratory-bred animals that remained circadian in wheel running displayed free-running periods between 23.3 and 24.8 h. A phase-response curve to light pulses in DD showed significant phase delays at circadian times 12 and 15, indicating the capacity to entrain to rapidly changing day lengths at high latitudes. Whether this phenotypic variation in circadian organization, with circadian, ultradian, and arrhythmic wheel-running activity patterns in constant lighting conditions, is a novel adaptation to life in the arctic remains to be elucidated.  相似文献   

8.
The freerunning period of circadian clocks in constant environmental conditions can be history-dependent, and one effect of entrainment of circadian clocks by light cycles is to cause long-lasting changes in the freerunning period that are termed after-effects. We have studied after-effects of entrainment to 22-h (LD 8:14) and 26-h (LD 8:18) light cycles in the cockroach Leucophaea maderae. We find that in cockroaches, the freerunning period of the locomotor activity rhythm, measured in constant darkness (DD), is 0.7h less after entrainment to T22 than after entrainment to T26. Induction of after-effects requires several days (>1 week) entrainment, and after induction, after-effects will persist in DD for over 40 days. Further after-effects are unaltered by phase-resetting of up to 12h caused by exposure to low-temperature pulses (7 degrees C) of 24 or 48h duration. After-effects also persist through re-entrainment for 2 weeks to 24-h light cycles. These results indicate that after-effects arise from stable changes in the circadian system that are likely to be independent of phase relationships among oscillators within the circadian system. We also show that entrainment to temperature cycles does not generate after-effects indicating that light may be unique in its ability to generate lasting changes in pacemaker period.  相似文献   

9.
Alfalfa (Medicago sativa L.) nodule amylase, starch phosphorylaseand invertase activities and concentrations of starch and proteinwere determined every 4 h for 44 h to determine if daily fluctuationsoccur. Plants experienced 12 h light: 12 h dark (LD) duringentrainment and the first 24 h of the experiment. The last 20h were under continuous darkness (DD). Temperature (21°C)and relative humidity (72%) were always constant. Data wereanalyzed by the cosinor method to determine probabilities ofsinusoidal rhythms with periods between 12.0 and 30.0 h. UnderLD conditions, significant 12.1 h rhythms were found for activitiesof amylase and starch phosphorylase and for starch content.Rhythms in amylase activities and starch content were inverselycorrelated whereas rhythms of starch content and starch phosphorylaseactivity were positively correlated. These data indicate thatnodule starch can be rapidly turned over and that amylases maybe responsible for the degradation. None of these rhythms persistedunder DD conditions. In contrast, invertase activity was rhythmicunder LD (24 h period) and DD conditions (30 h period). No significantrhythmic variations were detected in protein levels throughoutthe entire experiment. (Received August 12, 1985; Accepted November 22, 1985)  相似文献   

10.
Early environmental conditions may affect the development and manifestation of circadian rhythms. This study sought to determine whether the maintenance of rats under different T-cycles during lactation influences the subsequent degree of dissociation of the circadian rhythms of motor activity and core body temperature. Two groups of 22 day-old Wistar rats were kept after weaning under T-cycles of 22 h (T22) or 23 h (T23) for 70 days. Subsequently, they were kept in constant darkness (DD). Half of the animals in each group were born and reared under these experimental conditions, while the other half were reared until weaning under 24 h LD cycles (T24). Rats transferred from T24 to T22 or T23 showed two circadian components in motor activity and temperature, one entrained by light and the other free-running. In T22, there was also desynchronization between temperature and motor activity. Rats submitted to T23 from birth showed higher stability of the 23 h component than rats transferred from T24 to T23 after weaning. However, in comparison to rats born under T24 and subsequently changed to T22, animals submitted to T22 from birth showed shorter values of the period of the non-light-dependent component during T22, more aftereffects when transferred to DD, and a lack of desynchronization between motor activity and temperature. The results suggest that T-cycles in the early environment may modify overt rhythms by altering the internal coupling of the circadian pacemaker.  相似文献   

11.
South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker.  相似文献   

12.
13.
Ninety male Sprague-Dawley rats were exposed to 1:1-h light-dark (LD1:1) cycles for 50-90 days, and then they were released into constant darkness (DD). During LD1:1 cycles, behavioral rhythms were gradually disintegrated, and circadian rhythms of locomotor activity, drinking, and urine 6-sulfatoxymelatonin excretion were eventually abolished. After release into DD, 44 (49%) rats showed arrhythmic behavior for >10 days. Seven (8%) animals that remained arrhythmic for >50 days in DD were exposed to brief light pulses or 12:12-h light-dark cycles, and then they restored their circadian rhythms. These results indicate that the circadian clock was stopped, at least functionally, by LD1:1 cycles and was restarted by subsequent light stimulation.  相似文献   

14.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
In European starlings exposed to constant conditions, circadian rhythms in locomotion and feeding can occasionally exhibit complete dissociation from each other. Whether such occasional dissociation between two behavioral rhythms reflects on the strength of the mutual coupling of their internal oscillators has not been investigated. To examine this, as well as to elucidate the role of melatonin in this system, we simultaneously measured the rhythms of locomotion, feeding and melatonin secretion in starlings exposed to light-dark (LD) cycles of low intensity with steadily changing periods (T). In birds initially entrained to T 24 LD cycles (12L:12D, 10:0.2 lx), beginning on day 15, T was either lengthened to 26.5 h (experiment 1) or shortened to T 21.5 h (experiment 2) by changing the daily dark period 4 min each day. After 18 and 19 cycles of T 26.5 and T 21.5, respectively, birds were released into constant dim light conditions (LL(dim); 0.2 lx) for about 2 weeks. Locomotor and feeding rhythms were continuously recorded. Plasma melatonin levels were measured at three times: in T 24, when T equaled 26 or 22 h and at the end of T 26.5 or T 21.5 exposure. The results show that, contrary to our expectations, the three rhythms were not dissociated. Rather they remained synchronized and changed their phase angle difference with the light zeitgeber concomitantly and at the same rate. The melatonin rhythm stayed in synchrony with the behavioral rhythms and as a consequence, peaked either during day or at night, depending on the phase relationship between the activity rhythm and the zeitgeber cycle.  相似文献   

16.
The gymnotid electric fish, Eigenmannia virescens, exhibits electric discharge rhythmicity both in alternate light-dark (LD; 12h light, 12h dark [LD 12:12]) and in constant dark (DD) conditions. It suggests that the electric discharge rhythm is under control of the circadian clock. The free-running periods (FRPs) of electric discharge rhythms at 21°C in DD are greater than, but close to, 24h. The maximum of the electric discharge in the Eigenmannia system peaks approximately at circadian time 6 (CT6) in the middle of the subjective day. The circadian oscillator in the system is temperature compensated. This original report reveals the relationship between electric discharge activity and the circadian pacemaker in Eigenmannia and provides an alternative system to investigate circadian rhythms in vertebrates. (Chronobiology International, 17(1), 43-48, 2000)  相似文献   

17.
The circadian system of the lizard Iguana iguana is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms. The authors have examined the effects of pinealectomy and enucleation on the endogenous body temperature rhythm (BTR) and locomotor activity rhythm (LAR) of juvenile iguanas at constant temperature both in LD cycles and in constant darkness (DD). They measured the periods (tau) of the circadian rhythms of LAR and BTR, the phase relationships between them in DD (psiAT), and the phase relationship between each rhythm and the light cycle (psiRL). Pinealectomy lengthened tau of locomotor activity in all animals tested and abolished the BTR in two-thirds of the animals. In those animals in which the BTR did persist following pinealectomy, tau lengthened to the same extent as that of locomotor activity. Pinealectomy also delayed the onset of activity with respect to its normal phase relationship with body temperature in DD. Enucleation alone had no significant effect on tau of LAR or BTR; however, after enucleation, BTR became 180 degrees out of phase from LAR in DD. After both pinealectomy and enucleation, 4 of 16 animals became arrhythmic in both activity and body temperature. Their data suggest that rhythmicity, period, and phase of overt circadian behaviors are regulated through the combined output of multiple endogenous circadian oscillators.  相似文献   

18.
Early environmental conditions may affect the development and manifestation of circadian rhythms. This study sought to determine whether the maintenance of rats under different T‐cycles during lactation influences the subsequent degree of dissociation of the circadian rhythms of motor activity and core body temperature. Two groups of 22 day‐old Wistar rats were kept after weaning under T‐cycles of 22 h (T22) or 23 h (T23) for 70 days. Subsequently, they were kept in constant darkness (DD). Half of the animals in each group were born and reared under these experimental conditions, while the other half were reared until weaning under 24 h LD cycles (T24). Rats transferred from T24 to T22 or T23 showed two circadian components in motor activity and temperature, one entrained by light and the other free‐running. In T22, there was also desynchronization between temperature and motor activity. Rats submitted to T23 from birth showed higher stability of the 23 h component than rats transferred from T24 to T23 after weaning. However, in comparison to rats born under T24 and subsequently changed to T22, animals submitted to T22 from birth showed shorter values of the period of the non‐light‐dependent component during T22, more aftereffects when transferred to DD, and a lack of desynchronization between motor activity and temperature. The results suggest that T‐cycles in the early environment may modify overt rhythms by altering the internal coupling of the circadian pacemaker.  相似文献   

19.
Weanling male deer mice, Peromyscus maniculatus, were exposed for three weeks either to light-dark (LD) cycles with periods (T=L+D) ranging from T=23 (1L:22D) to T=25.16 (1L:24.16D) or to 24-h LD cycles with photoperiods ranging from 1 (1L:23D) to 19 (19L:5D) h. Both the circadian locomotor activity rhythms and the response of the reproductive system to these LD cycles were assessed. The results demonstrate that the photoperiodic effectiveness of light depends on the phase of the light relative to the animal's circadian system, as marked by the circadian activity rhythm. Light falling during the animal's subjective night, from activity onset to at least 11.8 h after activity onset, stimulates growth and maturation of the reproductive system, whereas light falling during the rest of the circadian cycle is nonstimulatory.  相似文献   

20.
The temporal organization of locomotor activity was investigated in nymphs of the cockroach Leucophaea maderae. Approximately 40% of the animals examined between 1 and 50 days of age exhibited a circadian activity rhythm in constant darkness (n = 172) with an average free-running period of 23.7 +/- 0.68 hr. Twelve of 17 animals in which activity was recorded for most or all of the final instar also exhibited periods of rhythmic activity. The rhythms of the nymphs could be entrained by light-dark (LD) cycles with periods of 22, 24, or 26 hr. In contrast, neither maternal influences during embryogenesis nor hatching from the egg was effective in synchronizing the rhythms. Although adult cockroaches can be readily entrained by temperature cycles, in nymphs temperature appeared at best to be a weak zeitgeber. Embryonic exposure to an LD cycle until 6 days prior to egg hatch was effective in synchronizing the activity rhythms of the nymphs, indicating that differentiation of an entrainable pacemaking system occurs prior to hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号