首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work aimed to evaluate if gas exchange and PSII photochemical activity in maize are affected by different irradiance levels during short-term exposure to elevated CO2. For this purpose gas exchange and chlorophyll a fluorescence were measured on maize plants grown at ambient CO2 concentration (control CO2) and exposed for 4 h to short-term treatments at 800 μmol(CO2) mol−1 (high CO2) at a photosynthetic photon flux density (PPFD) of either 1,000 μmol m−2 s−1 (control light) or 1,900 μmol m−2 s−1 (high light). At control light, high-CO2 leaves showed a significant decrease of net photosynthetic rate (P N) and a rise in the ratio of intercellular to ambient CO2 concentration (C i/C a) and water-use efficiency (WUE) compared to control CO2 leaves. No difference between CO2 concentrations for PSII effective photochemistry (ΦPSII), photochemical quenching (qp) and nonphotochemical quenching (NPQ) was detected. Under high light, high-CO2 leaves did not differ in P N, C i/C a, ΦPSII and NPQ, but showed an increase of WUE. These results suggest that at control light photosynthetic apparatus is negatively affected by high CO2 concentration in terms of carbon gain by limitations in photosynthetic dark reaction rather than in photochemistry. At high light, the elevated CO2 concentration did not promote an increase of photosynthesis and photochemistry but only an improvement of water balance due to increased WUE.  相似文献   

2.
Quercus ilex plants grown on two different substrates, sand soil (C) and compost (CG), were exposed to photosynthetic photon flux densities (PPFD) at 390 and 800 μmol(CO2) mol−1 (C390 and C800). At C800 both C and CG plants showed a significant increase of net photosynthetic rate (P N) and electron transport rate (ETR) in response to PPFD increase as compared to C390. In addition, at C800 lower non-photochemical quenching (NPQ) values were observed. The differences between C390 and C800 were related to PPFD. The higher P N and ETR and the lower dissipative processes found in CG plants at both CO2 concentrations as compared to C plants suggest that substrate influences significantly photosynthetic response of Q. ilex plants. Moreover, short-term exposures at elevated CO2 decreased nitrate photo-assimilation in leaves independently from substrate of growth.  相似文献   

3.
The effects of salinity (sea water at 0 ‰ versus 30 ‰) on gross rates of O2 evolution (J O2) and net rates of CO2 uptake (P N) were measured in the halotolerant estuarine C4 grasses Spartina patens, S. alterniflora, S. densiflora, and Distichlis spicata in controlled growth environments. Under high irradiance, salinity had no significant effect on the intercellular to ambient CO2 concentration ratio (C i/C a). However, during photosynthesis under limiting irradiance, the maximum quantum efficiency of CO2 fixation decreased under salinity across species, suggesting there is increased leakage of the CO2 delivered to the bundle sheath cells by the C4 pump. Growth under salinity did not affect the maximum intrinsic efficiency of photosystem 2, PS2 (FV/FM) in these species, suggesting salinity had no effect on photosynthesis by inactivation of PS2 reaction centers. Under saline conditions and high irradiance, P N was reduced by 75 % in Spartina patens and S. alterniflora, whereas salinity had no effect on P N in S. densiflora or D. spicata. This inhibition of P N in S. patens and S. alterniflora was not due to an effect on stomatal conductance since the ratio of C i/C a did not decrease under saline conditions. In growth with and without salt, P N was saturated at ∼500 μmol(quantum) m−2 s−1 while J O2 continued to increase up to full sunlight, indicating that carbon assimilation was not tightly coupled to photochemistry in these halophytic species. This increase in alternative electron flow under high irradiance might be an inherent function in these halophytes for dissipating excess energy.  相似文献   

4.
The effect of ectomycorrhizal Pisolithus tinctorius (Pt) infection was studied on the growth and photosynthetic characteristics of Pinus densiflora seedlings grown at ambient (360 µmol mol−1, AC) and elevated (720 µmol mol−1, EC) CO2 concentrations. After 18 weeks, Pt inoculation had led to significantly increased dry mass and stem diameter of P. densiflora at both CO2 concentrations, relative to non-inoculated seedlings. Moreover, EC significantly increased the ectomycorrhizal development. The phosphate content in needles inoculated with Pt was about three times higher than without inoculation at both CO2 concentrations. The PAR saturated net photosynthetic rates (P sat) of P. densiflora inoculated with Pt were clearly higher than for control seedlings at both CO2 concentrations, and the maximum net photosynthetic rate (P N) at saturated CO2 concentration (P max) was higher than in controls. Moreover, the carboxylation efficiency (CE) and RuBP regeneration rate of the P N/C i curve for P. densiflora inoculated with Pt were significantly higher than for non-inoculated seedlings at both CO2 concentrations, especially at EC. The water use efficiency (WUE) of seedlings inoculated with Pt grown at EC was significantly raised. Allocation of photosynthates to roots was greater in Pt inoculated pine seedlings, because of the enhanced activity of ectomycorrhiza associated with seedlings at EC. Moreover, P N of non-inoculated seedlings grown for 18 weeks at EC tended to be down regulated; in contrast, Pt inoculated seedlings showed no down-regulation at EC. The activity of ectomycorrhiza may therefore be enhanced physiological function related to water and phosphate absorption in P. densiflora seedlings at EC.This study was partly sponsored by the Ministry of Education, Sport, Culture, Science and Technology of Japan (RR2002, Basic Research B and Sprout study).  相似文献   

5.
Morphological and physiological measurements on individual leaves of Leucaena leucocephala seedlings were used to study acclimation to neutral shading. The light-saturated photosynthetic rate (Pn max) ranged from 19.6 to 6.5 mol CO2 m–2 s–1 as photosynthetic photon flux density (PPFD) during growth decreased from 27 to 1.6 mol m–2 s–1. Stomatal density varied from 144 mm–2 in plants grown in high PPFD to 84 mm–2 in plants grown in low PPFD. Average maximal stomatal conductance for H2O was 1.1 in plants grown in high PPFD and 0.3 for plants grown in low PPFD. Plants grown in low PPFD had a greater total chlorophyll content than plants grown in high PPFD (7.2 vs 2.9 mg g–1 on a unit fresh weight basis, and 4.3 vs 3.7 mg dm–2 on a unit leaf area basis). Leaf area was largest when plants were grown under the intermediate PPFDs. Leaf density thickness was largest when plants were grown under the largest PPFDs. It is concluded that L. leucocephala shows extensive ability to acclimate to neutral shade, and could be considered a facultative shade plant.Abbreviations the initial slope of the photosynthesis vs PPFD curve - Pn max the light-saturated photosynthetic rate - PPFD photosynthetic photon flux density  相似文献   

6.
In addition to other factors, high altitude (HA) environment is characterized by high photosynthetic photon flux density (PPFD). Photosynthetic characteristics of wild and cultivated plants were studied at different irradiances at Losar, India (altitude 4 200 m). Wild plants were tolerant to high PPFDs. Slopes of curve between net photosynthetic rate (P N) and intercellular CO2 concentration (C i) or stomatal conductance (g s) increased with increase in irradiance suggesting insensitivity or tolerance of these plants to higher PPFD. Cultivated plants, however, were sensitive to higher PPFD, their slopes of curves between P N and C i or g s decreased with increased PPFD. Tolerance or insensitivity to higher PPFD was an important parameter affecting plant performance at HA.  相似文献   

7.
A controlled growth chamber experiment was conducted to investigate the short-term water use and photosynthetic responses of 30-d-old carrot seedlings to the combined effects of CO2 concentration (50–1 050 μmol mol−1) and moisture deficits (−5, −30, −55, and −70 kPa). The photosynthetic response data was fitted to a non-rectangular hyperbola model. The estimated parameters were compared for effects of moisture deficit and elevated CO2 concentration (EC). The carboxylation efficiency (α) increased in response to mild moisture stress (−30 kPa) under EC when compared to the unstressed control. However, moderate (−55 kPa) and extreme (−70 kPa) moisture deficits reduced α under EC. Maximum net photosynthetic rate (P Nmax) did not differ between mild water deficit and unstressed controls under EC. Moderate and extreme moisture deficits reduced P Nmax by nearly 85 % compared to controls. Dark respiration rate (R D) showed no consistent response to moisture deficit. The CO2 compensation concentration (Γ) was 324 μmol mol−1 for −75 kPa and ranged 63–93 μmol mol−1 for other moisture regimes. Interaction between moisture deficit and EC was noticed for P N, ratio of intercellular and ambient CO2 concentration (C i/C a), stomatal conductance (g s ), and transpiration rate (E). P N was maximum and C i/C a was minimum at −30 kPa moisture deficit and at C a of 350 μmol mol−1. The g s and E showed an inverse relationship at all moisture deficit regimes and EC. Water use efficiency (WUE) increased with moisture deficit up to −55 kPa and declined thereafter. EC showed a positive influence towards sustaining P N and increasing WUE only under mild moisture stress, and no beneficial effects of EC were noticed at moderate or extreme moisture deficits.  相似文献   

8.
9.
Drought is a normal, recurrent feature of climate. In order to understand the potential effect of increasing atmospheric CO2 concentration (C a) on ecosystems, it is essential to determine the combined effects of drought and elevated C a (EC) under field conditions. A severe drought occurred in Central Florida in 1998 when precipitation was 88 % less than the average between 1984 and 2002. We determined daytime net ecosystem CO2 exchange (NEE) before, during, and after the drought in the Florida scrub-oak ecosystem exposed to doubled C a in open-top chamber since May 1996. We measured diurnal leaf net photosynthetic rate (P N) of Quercus myrtifolia Willd, the dominant species, during and after the drought. Drought caused a midday depression in NEE and P N at ambient CO2 concentration (AC) and EC. EC mitigated the midday depression in NEE by about 60 % compared to AC and the effect of EC on leaf P N was similar to its effect on NEE. Growth in EC lowered the sensitivity of NEE to air vapor pressure deficit under drought. Thus EC would help the scrub-oak ecosystem to survive the consequences of the effects of rising atmospheric CO2 on climate change, including increased frequency of drought, while simultaneously sequestering more anthropogenic carbon.  相似文献   

10.
We determined the interactive effects of irradiance, elevated CO2 concentration (EC), and temperature in carrot (Daucus carota var. sativus). Plants of the cv. Red Core Chantenay (RCC) were grown in a controlled environmental plant growth room and exposed to 3 levels of photosynthetically active radiation (PAR) (400, 800, 1 200 μmol m−2 s−1), 3 leaf chamber temperatures (15, 20, 30 °C), and 2 external CO2 concentrations (C a), AC and EC (350 and 750 μmol mol−1, respectively). Rates of net photosynthesis (P N) and transpiration (E) and stomatal conductance (g s ) were measured, along with water use efficiency (WUE) and ratio of internal and external CO2 concentrations (C i/C a). P N revealed an interactive effect between PAR and C a. As PAR increased so did P N under both C a regimes. The g s showed no interactive effects between the three parameters but had singular effects of temperature and PAR. E was strongly influenced by the combination of PAR and temperature. WUE was interactively affected by all three parameters. Maximum WUE occurred at 15 °C and 1 200 μmol m−2 s− 1 PAR under EC. The C i /C a was influenced independently by temperature and C a. Hence photosynthetic responses are interactively affected by changes in irradiance, external CO2 concentration, and temperature. EC significantly compensates the inhibitory effects of high temperature and irradiance on P N and WUE.  相似文献   

11.
We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4 photosynthetic pathways and how CO2 enrichment has affected species composition, plant growth responses, leaf properties and soil nutrient, carbon and water dynamics. Long-term effects of elevated CO2 on plant community composition and system processes in this sub-tropical grassland indicate very subtle changes in ecosystem functioning and no changes in species composition and dominance which could be ascribed to elevated CO2 alone. Species compositional data and soil δ13C isotopic evidence suggest no detectable effect of CO2 enrichment on C3:C4 plant mixtures and individual species dominance. Contrary to many general predictions C3 grasses did not become more abundant and C3 shrubs and trees did not invade the site. No season length stimulation of plant growth was found even after 5 years of exposure to CO2 concentrations averaging 610 μmol mol−1. Leaf properties such as total N decreased in the C3 but not C4 grass under elevated CO2 while total non-structural carbohydrate accumulation was not affected. Elevated CO2 possibly lead to increased end-of-season soil water contents and this result agrees with earlier studies despite the topographic water gradient being a confounding problem at our research site. Long-term CO2 enrichment also had little effect on soil carbon storage with no detectable changes in soil organic matter found. There were indications that potential soil respiration and N mineralization rates could be higher in soils close to the CO2 source. The conservative response of this grassland suggests that many of the reported effects of elevated CO2 on similar ecosystems could be short duration experimental artefacts that disappear under long-term elevated CO2 conditions.  相似文献   

12.
The effects of nitrogen [75 and 150 kg (N) ha−1] and elevated CO2 on growth, photosynthetic rate, contents of soluble leaf proteins and activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and nitrate reductase (NR) were studied on wheat (Triticum aestivum L. cv. HD-2285) grown in open top chambers under either ambient (AC) or elevated (EC) CO2 concentration (350 ± 50, 600 ± 50 μmol mol−1) and analyzed at 40, 60 and 90 d after sowing. Plants grown under EC showed greater photosynthetic rate and were taller and attained greater leaf area along with higher total plant dry mass at all growth stages than those grown under AC. Total soluble and Rubisco protein contents decreased under EC but the activation of Rubisco was higher at EC with higher N supply. Nitrogen increased the NR activity whereas EC reduced it. Thus, EC causes increased growth and PN ability per unit uptake of N in wheat plants, even if N is limiting.  相似文献   

13.
Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus × euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm−2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (g s, μmol m−2 s−1), photosynthetic CO2 fixation (A, mmol m−2 s−1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], g s was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.  相似文献   

14.
Regulation of light harvesting in response to changes in light intensity, CO2 and O2 concentration was studied in C4 species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO2 assimilation rates, O2 evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O2 evolution ( J\textO2 J_{{{\text{O}}_{2} }} , measured by analysis of chlorophyll fluorescence), net rates of O2 evolution and CO2 assimilation responded in parallel to changes in light and CO2 levels. The C4 subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O2 evolution (average value = 0.072 O2/quanta absorbed, ~14 quanta per O2 evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO2, ATP synthase proton conductivity (g H +) responded strongly to changes in electron flow, decreasing linearly with J\textO2 J_{{{\text{O}}_{2} }} , which was previously observed in C3 plants. It is proposed that g H + is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C4 plants is controlled by a decrease in g H +, which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.  相似文献   

15.
Gas exchange of Carex cinerascens was carried out in Swan Islet Wetland Reserve (29°48′ N, 112°33′ E). The diurnal photosynthetic course of C. cinerascens in the flooded and the nonflooded conditions were analyzed through the radial basis function (RBF) neural network approach to evaluate the influences of environmental variables on the photosynthetic activity. The inhibition of photosynthesis induced by soil flooding can be attributed to the reduced stomatal conductance (g s), the deficiency of Rubisco regeneration and decreased chlorophyll (Chl) content. As revealed by analysis of artificial neural network (ANN) models, g s was the dominant factor in determining the photosynthesis response. Weighting analysis showed that the effect of water pressure deficit (VPD) > air temperature (T) > CO2 concentration (C a) > air humidity (RH) > photosynthetical photon flux density (PPFD) for the nonflooded model, whereas for the flooded model, the factors were ranked in the order VPD > C a > RH > PPFD > T. The different photosynthetic response of C. cinerascens found between the nonflooded and flooded conditions would be useful to evaluate the flood tolerance at plant species level.  相似文献   

16.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P N) and stomatal conductance (g s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C i) were observed as Ψw decreased to −1.8 MPa, but C i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower.  相似文献   

17.
This study reports survival and physiological responses of micropropagated Ceratonia siliqua L. cvs. Galhosa and Mulata plants during ex vitro acclimatization under ambient (AC; 330 mol mol–1) or elevated (EC; 810 mol mol–1) CO2 concentration and a photosynthetic photon flux density of 125 mol m–2 s–1. CO2 enrichment during acclimatization did not improve survival rate that was around 80 % for both treatments. Eight weeks after ex vitro transplantation, photosynthetic capacity and apparent quantum yield in acclimatized leaves were higher in comparison with those in in vitro-grown leaves, without any significant difference between CO2 treatments. Chlorophyll content increased after acclimatization. However, EC led to a decrease in the total amount of chlorophyll in new leaves of both cultivars, compared to those grown at AC. Soluble sugars and starch contents were not markedly affected by growth EC, although starch had significantly increased after transfer to ex vitro conditions. EC induced an increase in the stem elongation and in the effective life of leaves, and a decrease in the number of new leaves.  相似文献   

18.
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000–2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (R s), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were –3.240 and 1.903 mol m–2 s–1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum R s were 1.470 and 0.226 mol(CO2) m–2 s–1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than R s, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type.  相似文献   

19.
Increase in both atmospheric CO2 concentration [CO2] and associated warming are likely to alter Earths’ carbon balance and photosynthetic carbon fixation of dominant plant species in a given biome. An experiment was conducted in sunlit, controlled environment chambers to determine effects of atmospheric [CO2] and temperature on net photosynthetic rate (P N) and fluorescence (F) in response to internal CO2 concentration (C i) and photosynthetically active radiation (PAR) of the C4 species, big bluestem (Andropogon gerardii Vitman). Ten treatments were comprised of two [CO2] of 360 (ambient, AC) and 720 (elevated, EC) μmol mol−1 and five day/night temperature of 20/12, 25/17, 30/22, 35/27 and 40/32 °C. Treatments were imposed from 15 d after sowing (DAS) through 130 DAS. Both F-P N/C i and F-P N/PAR response curves were measured on top most fully expanded leaves between 55 and 75 DAS. Plants grown in EC exhibited significantly higher CO2-saturated net photosynthesis (P sat), phosphoenolpyruvate carboxylase (PEPC) efficiency, and electron transport rate (ETR). At a given [CO2], increase in temperature increased P sat, PEPC efficiency, and ETR. Plants grown at EC did not differ for dark respiration rate (R D), but had significantly higher maximum photosynthesis (P max) than plants grown in AC. Increase in temperature increased Pmax, R D, and ETR, irrespective of the [CO2]. The ability of PEPC, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosystem components, derived from response curves to tolerate higher temperatures (>35 °C), particularly under EC, indicates the ability of C4 species to sustain photosynthetic capacity in future climates.  相似文献   

20.
Baruch Z  Jackson RB 《Oecologia》2005,145(4):522-532
The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO2 concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C4 grass (Trachypogon plumosus) and two African C4 grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO2 concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO2 increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO2, the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g−1 week−1 vs 0.25 g g−1 week−1). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO2 than did the native grass (biomass increases of 21–47% compared with decreases of 13–51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO2 promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO2 to fincreasesavor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO2 suggests further in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号