首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The features of Ca2+ fluxes, the importance of the Ca2+ pump‐mediated H+/Ca2+ exchanges at plasmalemma level, and the possible involvement of Ca2+‐ATPase activity in ABA‐induced changes of H+ fluxes were studied in Egeria densa leaves. The results presented show that, while in basal conditions no net Ca2+ flux was evident, a conspicuous Ca2+ influx (about 1.1 ìmol g?1 FW h?1) occurred. The concomitant efflux of Ca2+ was markedly reduced by treatment with 5 íM eosin Y (EY), a specific inhibitor of the Ca2+‐ATPase, that completely blocked the transport of Ca2+ after the first 20 ‐ 30 min. The decrease in Ca2+ efflux induced by EY was associated with a significant increase in net H+ extrusion (?ÄH+) and a small but significant cytoplasmic alkalinization. The shift of external [Ca2+] from 0.3 to 0.2 mM (reducing Ca2+ uptake by about 30 %) and the hindrance of Ca2+ influx by La3+ were accompanied by progressively higher ?ÄH+ increases, in agreement with a gradual decrease in the activity of a mechanism counteracting the Ca2+ influx by an nH+/Ca2+ exchange. The ABA‐induced decreases in ?ÄH+ and pHcyt were accompanied by a significant increase in Ca2+ efflux, all these effects being almost completely suppressed by EY, in line with the view that the ABA effects on H+ fluxes are due to activation of the plasmalemma Ca2+‐ATPase. These results substantially stress the high sensitivity and efficacy of the plasmalemma Ca2+ pump in removing from the cytoplasm the Ca2+ taken up, and the importance of the contribution of Ca2+ pump‐mediated H+/Ca2+ fluxes in bringing about global changes of H+ fluxes at plasmalemma level.  相似文献   

2.
Lung lamellar bodies maintain an acidic interior by an energy-dependent process. The acidic pH may affect the packaging of surfactant phospholipids, processing of surfactant proteins, or surfactant protein A-dependent lipid aggregation. The electron-probe microanalysis of lamellar body elemental composition has previously suggested that lamellar bodies contain high levels of calcium some of which may be in ionic form. In this study, we investigated the Ca2+ uptake characteristics in isolated lung lamellar bodies. The uptake of Ca2+ was measured by monitoring changes in the fluorescence of Fluo-3, a Ca2+ indicator dye. The uptake of Ca2+ in lamellar bodies was ATP-dependent and increased with increasing concentrations of Ca2+. At 100 nm Ca2+, the uptake was almost completely inhibited by bafilomycin A1, a selective inhibitor of vacuolar type H+-ATPase, or by NH4Cl, which raises the lamellar body pH, suggesting that the pH gradient regulates the uptake. The uptake of Ca2+ increased as the Ca2+ concentration was increased, but the relative contribution of bafilomycin A1-sensitive uptake decreased. At 700 nm, it comprised only 20% of the total uptake. These results suggest the presence of additional mechanism(s) for uptake at higher Ca2+ concentrations. At 700 nm Ca2+, the rate and extent of uptake were lower in the absence of K+ than in the presence of K+. The inhibitors of Ca2+-activated K+-channels, tetraethylammonium, Penitrem A, and 4-aminopyridine, also inhibited the K+-dependent Ca2+ uptake at 700 nm Ca2+. Thus the uptake of Ca2+ in isolated lung lamellar bodies appears to be regulated by two mechanisms, (i) the H+-gradient and (ii) the K+ transport across the lamellar body membrane. We speculate that lamellar bodies accumulate Ca2+ and contribute to regulation of cytosolic Ca2+ in type II cells under resting and stimulated conditions. Received: 18 August 1999/Revised: 9 November 1999  相似文献   

3.
Abstract: The ATP-stimulated uptake of 45Ca2+ [and [3H](-)-noradrenaline ([3H]NA)] into chromaffin granules and that into mitochondria are driven by a protonic gradient ΔμH+, composed of the components ΔpH (concentration gradient of protons) and ΔΨ(electrical potential difference). The granular ATPase pumps protons into the matrix (ΔpH inside acid, ΔΨ positive), but the mitochondrial ATPase ejects protons from the matrix (ΔpH alkaline, ΔΨ negative inside). To show different driving forces of uptake, the rate of the ATP-stimulated uptake of 45Ca2+ (and [3H]NA) into chromaffin granules was compared with the rate of the ATP-stimulated uptake of 45Ca2+ into mitochondria (adrenomedullary or rat liver). In the presence of nitrate, the rate of the ATP-stimulated uptake of 45Ca2+ into chromaffin granules is higher than in the presence of acetate, because the lyotropic anion nitrate stimulates the granular ATPase and increases ΔpH (acid inside). Compared with nitrate, the rate of the ATP-stimulated uptake of 45Ca2+ into mitochondria is higher in the presence of the proton-carrying anion acetate, which, after permeation, provides protons for ejection by the ATPase. In the absence of ATP, a valinomycin-mediated potassium influx (ΔΨ inside positive) stimulates the granular uptake of [3H]NA, which has an electrogenic component, but not the granular uptake of 45Ca2+, which is electroneutral. The electrogenic uptake of 45Ca2+ into mitochondria is stimulated by a valinomycin-mediated potassium efflux (ΔΨ negative inside). The ATP-stimulated uptake of 45Ca2+ into chromaffin granules is sensitive to ruthenium red, suggesting a carrier-mediated mechanism of uptake, and it is sensitive to atractyloside, indicating the simultaneous uptake of ATP. After collapse of ΔpH by ammonia, the ATP-stimulated uptake of 45Ca2+ into chromaffin granules is abolished, but not that into mitochondria. In the presence of ammonia, the rate of the ATP-stimulated uptake of [3H]NA is very low, and an ATP-independent uptake of 45Ca2+ into chromaffin granules is observed which is similar to the ATP-independent Ca2+/Na+ exchange at the granular membrane.  相似文献   

4.
Sealed plasma membrane vesicles were obtained in high purity from leaves of Commelina communis L. by aqueous two-phase partitioning. Based on the analysis of a range of markers, the preparations (U3+U3′ phases) were shown to be devoid of tonoplast, Golgi and thylakoid membranes, and showed only trace mitochondrial contamination. One-third of the vesicles were oriented inside out and exhibited ATP-driven 45Ca2+ transport [? 15 pkat (mg protein)−1]. Ca2+ uptake into the vesicles had a pH optimum of 7.2 and apparent Km values for Ca2+ of 4.4 μM and for Mg-ATP of 300 μM. Ca2+ uptake, K+, Mg2+-ATPase (EC 3.6.1.3) activity as well as glucan synthase II (EC 2.4.1.34) activity were all maximal at the same equilibrium density (1.17 g cm−3) on continuous sucrose density gradients. The protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) did not inhibit the ATP-dependent Ca2+ transport into the vesicles, excluding a Ca2+/H+ exchange driven by a proton gradient. ATP-dependent Ca2+ uptake was inhibited by erythrosin B (I50= 0.1 μM), ruthenium red (I50= 30 μM), La3+ (I50= 10 μM) and vanadate (I50= 500 μM), but not by azide, cyanide and oligomycin. The calmodulin antagonists, trifluoperazine (I50= 70 μM) and W-7 (I50= 100 μM) were also inhibitory, However, this inhibition was not overcome by calmodulin. Trifluoperazine and W-7, on the other hand, stimulated Ca2+ efflux from the vesicles rather than inhibit Ca2+ uptake. Our results demonstrate the presence of a Ca2+-ATPase in the plasma membrane of C. communis. In the intact cell, the enzyme would pump Ca2+ out of the cell. Its high affinity for Ca2+ makes it a likely component involved in adjusting low cytoplasmic Ca2+ levels. No indications for a secondary active Ca2+/H+ transport mechanism in the plasma membrane of C. communis were obtained. Both, the nucleotide specificity and the sensitivity towards vanadate. distinguish the Ca2+-ATPase from the H+-translocating K+. Mg2+-ATPase in C. communis plasma membranes.  相似文献   

5.
Parvalbumins (PVs) are acidic, intracellular Ca2+‐binding proteins of low molecular weight. They are associated with several Ca2+‐mediated cellular activities and physiological processes. It has been suggested that PV might function as a “Ca2+ shuttle” transporting Ca2+ from troponin‐C (TnC) to the sarcoplasmic reticulum (SR) Ca2+ pump during muscle relaxation. Thus, PV may contribute to the performance of rapid, phasic movements by accelerating the contraction–relaxation cycle of fast‐twitch muscle fibers. Interestingly, PVs promote the generation of power stroke in fish by speeding up the rate of relaxation and thus provide impetus to attain maximal sustainable speeds. However, immunological monitoring of diverse tissues demonstrated that PVs are also present in non‐muscle cells. The axoplasmic transport and various intracellular secretory mechanisms including the endocrine secretions seem to be controlled by the Ca2+ regulation machinery. Any defect in the Ca2+ handling apparatus may cause several clinical problems; for instance, PV deficiency alters the neuronal activity, a key mechanism leading to epileptic seizures. Moreover, atypical relaxation of the heart results in diastolic dysfunction, which is a major cause of heart failure predominantly among the aged people. PV may offer a unique potential to correct defective relaxation in energetically compromised failing hearts through PV gene transfer. Consequently, PV gene transfer may present a new therapeutic approach to correct cellular disturbances in Ca2+ signaling pathways of diseased organs. Hence, PVs appear to be amazingly useful candidate proteins regulating a variety of cellular functions through action on Ca2+ flux management.  相似文献   

6.
Abstract: Bovine chromaffin secretory vesicle ghosts loaded with Na+ were found to take up Ca2+ when incubated in K+ media or in sucrose media containing micromolar concentrations of free Ca2+. Li+- or choline+loaded ghosts did not take up Ca2+. The Ca2+ accumulated by Na+-loaded ghosts could be released by the Ca2+ ionophore A23187, but not by EGTA. Ca2+ uptake was inhibited by external Sr2+, Na +, Li +, or choline +. All the 45Ca2+ accumulated by Na+-dependent Ca2+ uptake could be released by external Na +, indicating that both Ca2+ influx and efflux occur in a Na+-dependent manner. Na + -dependent Ca2+ uptake and release were only slightly inhibited by Mg2+. In the presence of the Na+ ionophore Monensin the Ca2+ uptake by Na +-loaded ghosts was reduced. Ca2+ sequestered by the Na+-dependent mechanism could also be released by external Ca2+ or Sr2+ but not by Mg2+, indicating the presence of a Ca2+/Ca2+ exchange activity in secretory membrane vesicles. This Ca2+/Ca2+ exchange system is inhibited by Mg2+, but not by Sr2+. The Na + -dependent Ca2+ uptake system in the presence of Mg2+ is a saturable process with an apparent Km of 0.28 μM and a Vmax= 14.5 nmol min?1 mg protein?1. Ruthenium red inhibited neither the Na+/Ca2+ nor the Ca2+/Ca2+ exchange, even at high concentrations.  相似文献   

7.
The transport and hydrolytic activities of the plasma membrane (PM) Ca2+ pump were characterized in a PM fraction purified from seedlings of Arabidopsis thaliana by the aqueous two-phase partitioning technique. Ca2+ uptake could be energized by ATP and by ITP (at about 70% the rate sustained by ATP). This characteristic was used to measure the hydrolytic activity of the enzyme as Ca2+-dependent ITPase activity. The PM Ca2+ pump displayed a broad pH optimum around pH 7.2, was drastically inhibited by erythrosin B (EB), and was half-saturated by 60 μM ITP. It was stimulated by CaM, specially at low, non-saturating Ca2+ concentrations. All of these characteristics closely resemble those of the PM Ca2+ pump in other plant materials. Analysis of the effects of EB and other fluorescein derivatives (eosin Y and rose bengal) showed that: i) EB behaved as a competitive inhibitor with respect to ITP; ii) the PM Ca2+ pump was drastically inhibited by concentrations of fluorescein derivatives (submicromolar), much lower than those required to inhibit the PM H+-ATPase; iii) the different fluorescein derivatives were diversely efficient in inhibiting the activities of the Ca2+ pump and of the H+-ATPase of the PM (eosin Y was about 10000-fold, EB 1000-fold and rose bengal only 50-fold more active on the Ca2+ pump than on the H+-ATPase); and iv) the effectiveness of EB in inhibiting the Ca2+ pump was strongly affected by the protein concentration in the assay medium.  相似文献   

8.
We have used chlortetracycline (CTC) analysis to investigate mechanisms that may play important roles during bull sperm capacitation in a culture medium (containing glucose, heparin, and caffeine) known to promote capacitation and fertilization in vitro. In initial experiments employing the Ca2+ ionophore A23187, we identified three discrete CTC patterns so similar to those described for mouse and human sperm that we have employed the same nomenclature: “F,” characteristic of uncapacitated, acrosome-intact cells; “B,” characteristic of capacitated, acrosome-intact, cells; “AR,” characteristic of capacitated, acrosome-reacted cells. Over a 60-min period, A23187 stimulated significant increases in B and AR pattern cells, with concomitant decreases in F pattern cells, suggesting a very rapid transition from the uncapacitated to the capacitated state and then on to exocytosis. Without ionophore, significant changes in the proportions of F and B pattern cells were also observed, but the maximum responses required 4 hr; the proportion of AR cells was consistently ~ 15% throughout, indicating a low incidence of spontaneous acrosome loss. Analysis of cells in media with altered composition indicated that the inclusion of either heparin or caffeine significantly promoted capacitation to about the same extent, but together, heparin plus caffeine had an even more stimulatory effect. Despite this, none of these treatments triggered acrosome loss above the levels seen in media lacking these constituents. In the presence of caffeine, with or without heparin, the inclusion of glucose had little effect on responses, but in the presence of heparin there were fewer B cells. In the presence of either quercetin, a Ca-ATPase inhibitor used at 50–200 μM, or W-7, a calmodulin antagonist used at 5–125 μM, capacitation per se was accelerated, as evidenced by significant decreases in F and significant increases in B pattern cells; only the highest concentration of each caused significant increases in AR cells. In addition, 25 and 125 μM W-7 markedly stimulated motility, both quantitatively and qualitatively. Finally the Na+ ionophore monensin at 500 μM significantly accelerated both capacitation and acrosomal exocytosis. The addition of the dihydropyridine calcium channel blocker nifedipine at 10 nM, just prior to monensin, did not inhibit capacitation (F to B transition) but blocked acrosomal exocytosis (B to AR transition). We suggest that Ca2+ is required for functional changes in bull sperm, with a Ca2+-ATPase modulating intracellular Ca2+ during capacitation and calcium channels controlling the Ca2+ influx required for acrosomal exocytosis. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

10.
A rapid loss of accumulated Ca2+ is produced by addition of H+ to isolated heart mitochondria. The H+-dependent Ca+ efflux requires that either (a) the NAD(P)H pool of the mitochondrion be oxidized, or (b) the endogenous adenine nucleotides be depleted. The loss of Ca2+ is accompanied by swelling and loss of endogenous Mg2–. The rate of H+-dependent Ca2+ efflux depends on the amount of Ca2+ and Pi taken up and the extent of the pH drop imposed. In the absence of ruthenium red the H+-induced Ca2+-efflux is partially offset by a spontaneous re-accumulation of released Ca2+. The H+-induced Ca2+ efflux is inhibited when the Pi transporter is blocked withN-ethylmaleimide, is strongly opposed by oligomycin and exogenous adenine nucleotides (particularly ADP), and inhibited by nupercaine. The H+-dependent Ca2+ efflux is decreased markedly when Na+ replaces the K+ of the suspending medium or when the exogenous K+/H+ exchanger nigericin is present. These results suggest that the H+-dependent loss of accumulated Ca2+ results from relatively nonspecific changes in membrane permeability and is not a reflection of a Ca2+/H+ exchange reaction.  相似文献   

11.
Abstract: Nerve terminals (“synaptosomes”) isolated from rat brain hippocampus were loaded with the fluorescent Ca2+ indicator fura-2 and were subjected to depolarization with an elevated K+ concentration in a stopped-flow spectrophotometer to measure the activity of voltage-gated Ca2+ channels in the presynaptic membrane. Three components of Ca2+ influx were seen, which were tentatively identified as two classes of voltage-dependent Ca2+ channels with different inactivation kinetics (τ of ~60 ms and 1 s, respectively) and Na+/Ca2+ exchange working in the “reverse” mode. The activity of both classes of voltage-dependent Ca2+ channels was slightly augmented by the phorbol ester phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), but the effect of PMA was markedly enhanced by the protein phosphatase inhibitor okadaic acid (OKA). The PKC inhibitors calphostin C and dihydrosphingosine (DHS) caused a prompt decrease in voltage-dependent Ca2+ channel activity, but the effect of DHS could be showed by coaddition of OKA. These results suggest that the activity of presynaptic voltage-dependent Ca2+ channels in the hippocampus is under a dynamic balance between PKC phosphorylation (leading to activation) and protein phosphatase dephosphorylation (leading to inactivation) and that both of these metabolic pathways are tonically active in the nerve terminals.  相似文献   

12.
The acrosome reaction induced by the mouse egg's zona pcllucida in mouse sperm has been shown to proceed in two stages as characterized empirically by sequential changes in patterns of chlorletracycline fluorescence on the sperm plasma membrane surfaces. The chlortctracy-cline fluorescence pattern characteristic of fully intact sperm is designated B:in sperm bound to structurally intact zonae that induce the acrosome reaction, the B pattern changes first to an intermediate pattern S and then to a terminal pattern AR characteristic of the completed acrosome reaction. In the same study, it was shown, using a 9-amino acridine fluorescent pH probe, that completion of the first stage was characterized by increase in H+ permeability such that the H+ gradient between sperm head and medium was dissipated. In this study, we show that the fluorescent pH probe 9-N-dodecylamino acridine and the intracellular Ca2+ fluores cent probe fura-2 are both localized to the anterior part of the sperm head encompassing the acrosomal compartment in intact sperm, and the fluorescence associated with each probe is lost as the first stage of the acrosome reaction is completed. Loss of the pH probe fluorescence, pattern N, corresponds to onset of H+ permeability, and loss of fura-2 fluorescence, pattern F, corresponds to onset of Ca2+ permeability. Localization of intracellular fura-2 fluorescence to the acrosomal compartment required extracellular Mn2+ to quench surface-bound fura-2 AM, the tetra-acetoxymethyl ester of fura-2 used to load the cells. Loss of acrosomal fura-2 fluorescence is due to quenching by tracer Mn2+ accompanying Ca2+. Onset of membrane permeability to both H+ and Ca2+, asseenby loss of patterns N and F, occurred in synchrony in populations of sperm bound to isolated, structurally intact zonae, with an overall time coursfe of 210 min postbinding. The loss of pattern N in individual sperm cells bound to zonae was rapid, with a half time of 2.1 min. Concomitant with this rapid loss of pattern N was a shift in the amplitude of flagellar motion from large to small. The lag times to pattern N loss in 50 individual cells ranged from 30 to 140 min. The variable lag times determine the population kinetics; the rate of the endpoinl reaction seen in the individual cells is rapid and constant. Dissipation of the H+ gradient with immediate loss of pattern N was readily achieved by addition of nigericin with no change in the time course of the onset of Ca2+ permeability of the membranes enclcsing the acrasome. Onset of Ca2+ permeability was always accompanied by onset of H+ permeability, but the alkalinization caused by H+ permeability induced by nigericin had no effect on Ca2+ permeability in intact sperm. This indicates that the permeabilization of the membranes marking the endpoint reaction of the B-to-S transition is most likely due to pore formation induced by punctate fusion of the plasma and outer acrasomal membranes, as would be expected for an exocytotic reaction.  相似文献   

13.
Abstract: Oxidative insult elicited by hydrogen peroxide (H2O2) was previously shown to increase the basal intracellular Ca2+ concentration in synaptosomes. In the present study, the effect of H2O2 on the depolarization-evoked [Ca2+] signal was investigated. Pretreatment of synaptosomes with H2O2 (0.1–1 mM) augmented the [Ca2+] rise elicited by high K+ depolarization with essentially two alterations, the sudden sharp rise of [Ca2+]i due to K+ depolarization is enhanced and, instead of a decrease to a stable plateau, a slow, steady rise of [Ca2+]i follows the peak [Ca2+]i. H2O2 in the same concentration range lowered the ATP level and the [ATP]/[ADP] ratio. When carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) (1 µM) or rotenone (2 µM)/oligomycin (10 µM) was applied initially to block mitochondrial ATP production, the lowered [ATP]/[ADP] ratio was further reduced by subsequent addition of 0.5 mM H2O2. The decline of the [ATP]/[ADP] ratio was parallel with but could not explain the enhanced K+-evoked [Ca2+]i signal, indicated by experiments in which the [ATP]/[ADP] ratio was decreased by FCCP (0.1 µM) or rotenone (2 µM) to a similar value as by H2O2 without causing any alteration in the [Ca2+]i signal. These results indicate that H2O2-evoked oxidative stress, in its early phase, gives rise to a complex dysfunction in the Ca2+ homeostasis and, parallel with it, to an impaired energy status.  相似文献   

14.
Over the last four decades, different hypotheses of Ca2+ and dissolved inorganic carbon transport to the intracellular site of calcite precipitation have been put forth for Emiliania huxleyi (Lohmann) Hay & Mohler. The objective of this study was to assess these hypotheses by means of mathematical models. It is shown that a vesicle‐based Ca2+ transport would require very high intravesicular Ca2+ concentrations, high vesicle fusion frequencies as well as a fast membrane recycling inside the cell. Furthermore, a kinetic model for the calcification compartment is presented that describes the internal chemical environment in terms of carbonate chemistry including calcite precipitation. Substrates for calcite precipitation are transported with different stoichiometries across the compartment membrane. As a result, the carbonate chemistry inside the compartment changes and hence influences the calcification rate. Moreover, the effect of carbonic anhydrase (CA) activity within the compartment is analyzed. One very promising model version is based on a Ca2+/H+ antiport, CO2 diffusion, and a CA inside the calcification compartment. Another promising model version is based on an import of Ca2+ and HCO3? and an export of H+.  相似文献   

15.
Abstract: The inhibitory effects of Na+/Ca2+ exchange inhibitory peptide (XIP), which corresponds to residues 219–238 of the Na+/Ca2+ exchange protein from canine heart, were studied in both rat and human brain plasma membrane vesicles. XIP had very high potency with respect to the inhibition of the initial velocity of intravesicular Na+-dependent Ca2+ uptake in both rat brain [IC50 = 3.05 ± 0.69 µM (mean ± SE)] and human brain (IC50 = 3.58 ± 0.58 µM). The maximal inhibition seen in rat brain vesicles was ~80%, whereas human brain vesicles were inhibited 100%. XIP also inhibited extravesicular Na+-dependent Ca2+ release, and the inhibitory effect was enhanced by increasing the extravesicular Na+ concentration. In contrast, the inhibitory effect of bepridil was competitive with respect to extravesicular Na+. When XIP was added at steady state (5 min after the initiation of intravesicular Na+-dependent Ca2+ uptake), it was found that the intravesicular Ca2+ content declined with time. Analysis of unidirectional fluxes for Ca2+ at steady state showed that 50 µM XIP inhibited Ca2+ influx and efflux ~85 and 70%, respectively. This result suggested that XIP inhibited both Na+/Ca2+ exchange and Ca2+/Ca2+ exchange but had no effect on the passive release pathway for Ca2+. The results suggest structural homology among cardiac, rat, and human brain exchangers in the XIP binding domain and that the binding of Na+ or other monovalent cations, e.g., K+, is required for XIP to have its inhibitory effect on Ca2+ transport.  相似文献   

16.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

17.
In developing seeds of bean (Phaseolus vulgaris L.), phloem‐imported assimilates (largely sucrose and potassium) are released from coats to seed apoplasm and subsequently retrieved by the dermal cell complexes of cotyledons. To investigate the mechanisms of K+ uptake by the cotyledons, protoplasts of dermal cell complexes were isolated and whole‐cell currents across their plasma membranes were measured with the patch‐clamp technique. A weakly rectified cation current displaying a voltage‐dependent blockade by external Ca2+ and acidic pH, dominated the conductance of the protoplasts. The P haseolus v ulgaris Cotyledon Dermal‐cell pH and Calcium‐dependent Cation Conductance (Pv‐CD‐pHCaCC) was highly selective for K+ over Ca2+ and Cl. For K+ current through Pv‐CD‐pHCaCC a sigmoid shaped current–voltage (IV) curve was observed with negative conductance at voltages between ?200 and ?140 mV. This negative K+ conductance was Ca2+ dependent. With other univalent cations (Na+, Rb+, NH4+) the currents were smaller and were not Ca2+ dependent. Reversal potentials remained constant when external K+ was substituted with these cations, suggesting that Pv‐CD‐pHCaCC channels were non‐selective. The Pv‐CD‐pHCaCC would provide a pathway for K+ and other univalent cation influx into developing cotyledons. These cation influxes could be co‐ordinated with sucrose influx via pH and Ca2+dependence.  相似文献   

18.
Plasma membrane preparations of high purity were obtained from roots of dark-grown wheat (Triticum aestivum L. cv. Drabant) by aqueous polymer two-phase partitioning. These preparations mainly contained sealed, right-side-out vesicles (ca 90% exposing the original outside out). By subjecting the preparations to 4 freeze/thaw cycles the proportion of sealed, inside-out (cytoplasmic side out) vesicles increased to ca 30%. Inside-out and right-side-out plasma membrane vesicles were then separated by partitioning the freeze/thawed plasma membranes in another aqueous polymer two-phase system. In this way, highly purified, sealed, inside-out (>60% inside-out) vesicles were isolated and subsequently used for characterization of the Ca2+ transport system in the wheat plasma membrane. The capacity for 45Ca2+ accumulation, nonlatent ATPase activity and proton pumping (the latter two markers for inside-out plasma membrane vesicles) were all enriched in the inside-out vesicle fraction as compared to the right-side-out fraction. This confirms that the ATP-binding site of the 45Ca2+ transport system, similar to the H+-ATPase, is located on the inner cytoplasmic surface of the plant plasma membrane. The 45Ca2+ uptake was MgATP-dependent with an apparent Km for ATP of 0.1 mM and a high affinity for Ca2+ [Km(Ca2+/EGTA) = 3 μM]. The pH optimum was at 7.4–7.8. ATP was the preferred nucleotide substrate with ITP and GTP giving activities of 30–40% of the 45Ca2+ uptake seen with ATP. The 45Ca2+ uptake was stimulated by monovalent cations; K? and Na+ being equally efficient. Vanadate inhibited the 45Ca2+ accumulation with half-maximal inhibitions at 72, 57 and 2 μM for basal, total (with KCI) and net K+-stimulated uptake, respectively. The system was also highly sensitive to erythrosin B with half-maximal inhibition at 25 nM and total inhibition at 1μM. Our results demonstrate the presence of a primary Ca2+ transport ATPase in the plasma membrane of wheat roots. The enzyme is likely to be involved in mediating active efflux (ATP-binding sites on the cytoplasmic side) to the plant cell exterior to maintain resting levels of cytoplasmic free Ca2+ within the cell.  相似文献   

19.
Spermidine (Spd) has been correlated with various physiological and developmental processes in plants, including pollen tube growth. In this work, we show that Spd induces an increase in the cytosolic Ca2+ concentration that accompanies pollen tube growth. Using the whole‐cell patch clamp and outside‐out single‐channel patch clamp configurations, we show that exogenous Spd induces a hyperpolarization‐activated Ca2+ current: the addition of Spd cannot induce the channel open probability increase in excised outside‐out patches, indicating that the effect of Spd in the induction of Ca2+ currents is exerted via a second messenger. This messenger is hydrogen peroxide (H2O2), and is generated during Spd oxidation, a reaction mediated by polyamine oxidase (PAO). These reactive oxygen species trigger the opening of the hyperpolarization‐activated Ca2+‐permeable channels in pollen. To provide further evidence that PAO is in fact responsible for the effect of Spd on the Ca2+‐permeable channels, two Arabidopsis mutants lacking expression of the peroxisomal‐encoding AtPAO3 gene, were isolated and characterized. Pollen from these mutants was unable to induce the opening of the Ca2+‐permeable channels in the presence of Spd, resulting in reduced pollen tube growth and seed number. However, a high Spd concentration triggers a Ca2+ influx beyond the optimal, which has a deleterious effect. These findings strongly suggest that the Spd‐derived H2O2 signals Ca2+ influx, thereby regulating pollen tube growth.  相似文献   

20.
This paper reports the phenomenon of acquired cross‐tolerance to oxidative stress in plants and investigates the activity of specific Ca2+ transport systems mediating this phenomenon. Nicotiana benthamiana plants were infected with Potato virus X (PVX) and exposed to oxidative [either ultraviolet (UV‐C) or H2O2] stress. Plant adaptive responses were assessed by the combined application of a range of electrophysiological (non‐invasive microelectrode ion flux measurements), biochemical (Ca2+‐ and H+‐ATPase activity), imaging (fluorescence lifetime imaging measurements of changes in intracellular Ca2+ concentrations), pharmacological and cytological transmission electrone microscopy techniques. Virus‐infected plants had a better ability to control UV‐induced elevations in cytosolic‐free Ca2+ and prevent structural and functional damage of chloroplasts. Taken together, our results suggest a high degree of crosstalk between UV and pathogen‐induced oxidative stresses, and highlight the crucial role of Ca2+ efflux systems in acquired resistance to oxidative stress in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号