首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cell cycle stage of donor cells and the method of cell cycle synchronization are important factors influencing the success of somatic cell nuclear transfer. In this study, we examined the effects of serum starvation, culture to confluence, and treatment with chemical inhibitors (roscovitine, aphidicolin, and colchicine) on cell cycle characteristics of canine dermal fibroblast cells. The effect of the various methods of cell cycle synchronization was determined by flow cytometry. Short periods of serum starvation (24-72 h) increased (P<0.05) the proportion of cells at the G0/G1 phase (88.4-90.9%) as compared to the control group (73.6%). A similar increase in the percentage of G0/G1 (P<0.05) cells were obtained in the culture to confluency group (91.8%). Treatment with various concentrations of roscovitine did not increase the proportion of G0/G1 cells; conversely, at concentrations of 30 and 45 microM, it increased (P<0.05) the percentage of cells that underwent apoptosis. The use of aphidicolin led to increase percentages of cells at the S phase in a dose-dependent manner, without increasing apoptosis. Colchicine, at a concentration of 0.1 microg/mL, increased the proportion of cells at the G2/M phase (38.5%, P<0.05); conversely, it decreased the proportions of G0/G1 cells (51.4%, P<0.05). Concentrations of colchicines >0.1 microg/mL did not increase the percentage of G2/M phase cells. The effects of chemical inhibitors were fully reversible; their removal led to a rapid progression in the cell cycle. In conclusion, canine dermal fibroblasts were effectively synchronized at various stages of the cell cycle, which could have benefits for somatic cell nuclear transfer in this species.  相似文献   

3.
Because of the scarcity of techniques for synchronizing the growth of cultured human diploid fibroblasts at multiple stages within the cell cycle, efforts were expended in this report to establish a set of protocols that would permit synchronization of cells at several different points throughout the cycle. The protocols that were developed to synchronize the growth of HSF-24 and HSF-55 cells, human foreskin-derived fibroblast cultures, were modifications of procedures employed to synchronize the growth of cultured rodent cells. Optimization of synchrony induction was directed by consideration of both the biochemical properties of the synchronized populations (determined via three-parameter flow cytometric measurements of DNA, RNA, and protein contents) and their kinetic behavior following reversal of the synchronization-inducing blockade (determined via combined flow cytometric analysis of DNA content, [3H]thymidine autoradiography, and measurement of increase in cell number). The conditions judged to yield the best results for studying events associated with production of a G0 block or for maintaining cells for prolonged periods in G0 were those in which the cells were grown to confluency in D-MEM supplemented with 10% fetal bovine serum. Procedures producing the best results for studying processes associated with the G0 to G1 transition, G1 events, and operations accompanying the transition from G1 to S, employed subconfluent growth for 48 h in alpha-MEM + 0.1% fetal bovine serum (alpha-MEM0.1F) followed by resuspension in alpha-MEM containing 10% fetal bovine serum (alpha-MEM10F). When the goal was to obtain cells in which to study very early S-phase events, satisfactory results were achieved by combining a 48-h period of subconfluent growth in alpha-MEM0.1F, followed by treatment for 24 h in alpha-MEM10F containing 5 micrograms/ml aphidicolin. For study of events occurring in mid- to late-cycle, acceptable results were achieved by combining a 48-h block in alpha-MEM0.1F with resuspension for 24 h in alpha-MEM10F containing 10(-3) M hydroxyurea followed by resuspension in drug-free alpha-MEM10F. The best results were obtained with these latter synchronization procedures (i.e., low-serum/high-serum + APC or HU/high serum) when the fetal calf serum was replaced with heat-inactivated calf serum. The success achieved in synchronizing the growth of these human diploid fibroblasts compared favorably/exceeded the results obtained with synchronized cultures of Chinese hamster ovary cells.  相似文献   

4.
猪胎儿肾脏成纤维细胞体外培养体系的建立   总被引:3,自引:0,他引:3  
本研究旨在建立猪胎儿肾脏成纤维细胞体外培养体系,并探讨其作为猪体细胞克隆供体的可能性。使用组织块培养法从体长为10cm以上的猪胎儿分离得到猪胎儿肾脏成纤维细胞,绘制了生长曲线,鉴定了细胞类型并且进行了细胞周期同期化效果的研究。结果表明:该培养体系可以支持猪胎儿肾脏成纤维细胞的体外生长,单个细胞均为梭形细胞,抗波形蛋白免疫荧光染色显示为阳性,而抗角形蛋白免疫荧光染色为阴性,分离到的细胞为胎儿肾脏成纤维细胞。使用血清饥饿法和接触抑制法诱导细胞进入G0/G1期,并且分别比较两者同期化效率,结果显示:血清饥饿2d和4d的同期化效率差异不显著,但都比8d组的高(88.97%和87.69%比82.45%,P<0.05);接触抑制4d、6d组间同期化效率差异不显著,但都比0d组的高(85.56%和85.89%比81.82%,P<0.05)。本研究在国内首次分离得到猪胎儿肾脏成纤维细胞,已经在体外传代培养到32代,其同期化效果好,可以作为体细胞克隆供体。  相似文献   

5.
The present study was conducted to examine the effect of cell culture conditions, antioxidants, protease inhibitors (PI), and different levels of dimethylsulfoxide (DMSO) for the promotion of synchronization of different cell cycles of Siberian tiger skin fibroblasts. We also compared the ability of somatic cell nuclei of the Siberian tiger in pig cytoplasts and to support early development after reconstruction. Cell cycle synchronization between nuclear donor and recipient cells is considered to be one of the most crucial factors for successful cloning. Five experiments were performed each with a one-way completely randomized design involving three replicates of all treatments. Least significant difference (LSD) was used to determine variation among treatment groups. Experiment I focused in the effects of cycling, serum starved and fully confluent stages of Siberian tiger cells on different cell cycles. In Experiment II, the effects of different antioxidants like beta-Mercaptoethanol (beta-ME, 10 microM), cysteine (2 mM), and glutathione (2 mM) were examined after cells were fully confluent without serum starvation for 4 hr. In Experiment III, three PI, namely 6-dimethylaminopurine (6-DMAP, 2 mM), cycloheximide (7.5 microg/ml) and cytochalasin B (7.5 microg/ml) were used in the sane manner as in Experiment II. In Experiment IV, different levels of DMSO at 0%, 0.5%, 1.0%, and 2.5% were tested on different cell cycle stages of Siberian tiger examined by Flowcytometry (FACS). In Experiment I, 67.2% of the Siberian tiger skin fibroblasts reached the G0/G1 stage (2C DNA content) in fully confluent conditions which was more than the cycling (49.8%) and serum starved (SS) medium (65.5%; P < 0.05). Among the chemically treated group, glutathione (72.6%) and cycloheximide (71.3%) had little bit better results for the synchronization of G0 + G1 phases than serum starved and fully confluent. After nuclear transfer we did not see any significant differences on the development of tiger-porcine reconstructed embryos at cycling, SS and fully confluent. Data indicate that prolonged culture of cells in the absence of serum as well as using different chemicals for this experiment does not imply a shift in the percentage of cells that enter G0/G1 and that confluency is sufficient to induce quiescence. This finding can be beneficial in nuclear transfer programs in Siberian tiger, because there are negative effects, such as apoptosis associated with serum starvation.  相似文献   

6.
The present study was undertaken to examine cell cycle characteristics of endangered Goral (CITES Appendix I) adult skin fibroblasts. Seven experiments were performed, each with a one-way completely randomized design involving three replicates. Least significant difference (LSD) was used to determine variation among treatment groups. Experiment I focused on the effects of cycling, serum-starved, and fully confluent stages of Goral cells. In Experiments II and III, the effects of different antioxidants like beta-mercaptoethanol (beta-ME, 10 microM), cysteine (2 mM), and glutathione (2 mM) were examined after cells were fully confluent without serum starvation for 24 h and 4 h, respectively. In Experiments IV and V, three protease inhibitors, namely 6-dimethylaminopurine (6-DMAP, 2 mM), cycloheximide (7.5 microg/ml) and cytochalasin B (7.5 microg/ml), were used as in Experiment II. In Experiments VI and VII, the effect of different levels of dimethylsulphoxide (DMSO) at 0%, 0.5%, 1.0% and 2.5% were tested by flow cytometry (FACS). In Experiment I, 68.7% of Goral skin fibroblasts reached the G(0)/G(1) stage (2C DNA content) when subjected to the serum-starved medium, which was more than the cycling (64.9%) and fully confluent groups (61.0%) (P > 0.05). Among the chemically treated group, beta-ME, cysteine and DMSO showed better results for synchronization of G(0) + G(1) phases than cycling, serum-starved and fully confluent groups. It can thus be concluded that beta-ME, cysteine and DMSO at certain concentrations can synchronize the cell cycle effectively, which could have a positive impact on somatic cell nuclear transfer in the goral.  相似文献   

7.
Chemical agents for cell cycle synchronization have greatly facilitated the study of biochemical events driving cell cycle progression. G1, S and M phase inhibitors have been developed and used widely in cell cycle research. However, currently there are no effective G2 phase inhibitors and synchronization of cultured cells in G2 phase has been challenging. Recently, a selective CDK1 inhibitor, RO-3306, has been identified that reversibly arrests proliferating human cells at the G2/M phase border and provides a novel means for cell cycle synchronization. A single-step protocol using RO-3306 permits the synchronization of >95% of cycling cancer cells in G2 phase. RO-3306 arrested cells enter mitosis rapidly after release from the G2 block thus allowing for isolation of mitotic cells without microtubule poisons. RO-3306 represents a new molecular tool for studying CDK1 function in human cells.  相似文献   

8.
Arachidonic acid (AA) release and prostaglandin (PG) biosynthesis were studied in rat embryo fibroblasts (R 129) synchronized by double thymidine-excess block. Whatever the culture medium was (medium 199 supplemented with 10% fetal calf serum (FCS) or 1% FCS plus 0.1% bovine serum albumin (BSA], AA release rapidly increased until the 4th hour of the cell cycle (S phase), remained on a plateau in G2M and G1 phases and did not increase again in the S phase of the following cell cycle. Time course and amplitude of AA release in synchronized cells did not differ from what it was observed after the simple renewal of the culture medium in asynchronous cells. So AA release seemed to be independent of the cell cycle. By contrast, PGE2 and PGF2 alpha biosynthesis clearly increased in the S phase of two consecutive cell cycles, indicating that cyclooxygenase activity and not phospholipase A2 activity vary according to the cell cycle.  相似文献   

9.
The kinetic of release of the tissular polypeptide antigen (TPA) by MCF-7 cells synchronised by sequential treatment with hydroxytamoxifen (OH-TAM) and 17 beta-estradiol has been studied. The present findings confirm the proliferative effect of estradiol on MCF-7 cells, with a shortening of the doubling time (TD) (22.2 h versus 24.8 h) and an increase in the growing fraction (Fc) (94% versus 81%) when compared with the same parameters measured in cells rescued from OH-TAM but not treated with estradiol. In addition, the action of estradiol was followed by a simultaneous increase in the amount of TPA in the culture medium related with the phases G2/M and G1 of the mitotic cycle. This phenomenon seems to be the reason for the steplike shape of the TPA released curves. The experimental results suggest that in MCF-7 cells the sequential combination of antiestrogenic agents and estrogens leads to a cellular synchronization. Furthermore this synchronization is maintained for at least 3 cycles of cell division.  相似文献   

10.
The success of somatic cell nuclear transfer depends critically on the cell cycle stage of the donor nucleus and the recipient cytoplast. Karyoplasts in the G0 or G1 stages are considered to be the most suitable for nuclear transfer. In the present study, we used a reversible cell cycle inhibitor, mimosine, to synchronize porcine granulosa cells (GCs) in G1 phase of the cell cycle. Porcine GCs were obtained from 3 to 5mm ovarian follicles of slaughtered gilts. The effect of mimosine on the proliferation, DNA synthesis and cell cycle stage of cultured cells was examined by incorporation of radiochemical 3H-thymidine, immunocytochemical detection of incorporated thymidine analogue 5-bromo-2-deoxyuridine (BrdU) and flow cytometry analyses. Mimosine treatment of pig GCs for 24h resulted in proliferation arrest in vitro. Treatment with 0.5mM mimosine significantly (P<0.05) inhibited 3H-thymidine incorporation after 24h of culture (4.6% +/- 0.1) and after 24h of culture in serum deprived medium (41.3% +/- 3.8), in comparison to controls (100%). Inhibition of DNA synthesis was further confirmed by immunocytochemical and flow cytometry analyses. Compared with controls (78.2%), mimosine treatment for 24h increased the proportion of G0/G1 cells in the culture (85.7%) more effectively than serum starvation (SS; 81.2%). Mimosine-caused G1 arrest of porcine GCs was fully reversible and cells continued to proliferate after removing the drug, especially when they were stimulated by EGF.  相似文献   

11.
本研究系统探讨了体细胞的组织来源及培养代数对猪核移植重构胚发育的影响。体外成熟培养40-44h的猪卵母细胞去核后,将经血清饥饿(0.5?s)培养2-9d、0.1mg/L Aphidicolin (APD)培养 0.5?S培养2-9d或一般培养法(10?S)培养的卵丘细胞、颗粒细胞、输卵管上皮细胞和耳皮成纤维细胞,直接注射到去核的卵母细胞质中,或注射到卵周隙中。再经电融合(100V/mm,30μs,电脉冲1次)构建重构胚。重构胚以钙离子载体A23817或电脉冲结合6- DMAP激活处理,体外培养6天。耳皮成纤维细胞和颗粒细胞经0.1mg/L APD 0.5?S培养处理后的重组胚卵裂率,均高于血清饥饿和一般培养处理的同种供体细胞(P<0.01)。卵丘细胞、颗粒细胞经0.1mg/L APD 0.5?S处理后进行核移植的分裂率和发育率均高于输卵管上皮细胞和耳皮成纤维细胞(P<0.05)。以猪颗粒细胞为核供体时,电融合法的重构胚分裂率显著高于胞质内注入法(P<0.05),但囊胚发育率无显著差异(P>0.05)。培养3代和6代的猪颗粒细胞以及培养6代和10代的耳皮成纤维细胞,其具有正常二倍染色体的细胞比例均无显著差异(P>0.05);以这2种细胞不同培养代数做供体进行核移植时,各代之间核移胚的体外分裂率、囊胚发育率无显著差异(P>0.05)。这些结果表明:(1)猪耳皮成纤维细胞和颗粒细胞经培养传代所建立起来的细胞系相对比较稳定;(2)0.1mg/L APD预培养处理供体细胞能提高猪体细胞核移植的效果,血清饥饿培养则无明显效果;(3)猪颗粒细胞和耳皮成纤维细胞等均可做供核细胞.核移植后都能得到体细胞克隆的囊胚,但前者的效果略优于后者,且其核移植效果不受供核细胞培养代数的影响;(4)电融合核移植胚胎的发育率高于胞质内直接注入法,但两者的总体效率相近。  相似文献   

12.
Competency for self-renewal of human embryonic stem (ES) cells is linked to pluripotency. However, there is a critical paucity of fundamental parameters of human ES cell division. In this study we show that human ES cells (H1 and H9; NIH-designated WA01 and WA09) rapidly proliferate due to a very short overall cell cycle (15-16 h) compared to somatic cells (e.g., normal diploid IMR90 fibroblasts and NT-2 teratocarcinoma cells). The human ES cell cycle maintains the four canonical cell cycle stages G1, S, G2, and M, but the duration of G1 is dramatically shortened. Bromodeoxyuridine (BrdU) incorporation and FACS analysis demonstrated that 65% of asynchronously growing human ES cells are in S phase. Immunofluorescence microscopy studies detecting BrdU labeled mitotic chromosomes, Ki67 domains, and p220(NPAT) containing Cajal bodies revealed that the durations of the S ( approximately 8 h), G2 ( approximately 4 h), and M phases ( approximately 1 h) are similar in ES and somatic cells. We determined that human ES cells remain viable after synchronization with either nocodazole or the anti-tumor drug Paclitaxel (taxol) and have an abbreviated G1 phase of only 2.5-3 h that is significantly shorter than in somatic cells. Molecular analyses using quantitative RT-PCR demonstrate that human ES cells and somatic cells express similar cell cycle markers. However, among cyclins and cyclin-dependent kinases (CDKs), we observed high mRNA levels for the G1-related CDK4 and cyclin D2 genes. We conclude that human ES cells exhibit unique G1 cell cycle kinetics and use CDK4/cyclin D2 related mechanisms to attain competency for DNA replication.  相似文献   

13.
One of the most important factors determining the success of the development of cloned embryos is the cell cycle stage of the donor cells. We investigated the effects of serum starvation, culturing to confluence and roscovitine treatment on the cell cycle synchronization of goldfish caudal fin-derived fibroblasts by flow cytometric analysis. The results show that culturing the cells to confluence (85.5%) and roscovitine treatment (82.71%) yield a significantly higher percentage of cells arrested in the G0/G1 (P < 0.05) phase than serum starvation (62.85%). Different concentrations of roscovitine (5, 10, or 15 μM) induce cell cycle arrest at the G0/G1 phase.  相似文献   

14.
The objective was to determine the appropriate timing of fixed-time artificial insemination (AI) following administration of the MGA Select protocol. Cows at two locations (Location 1, n=114; Location 2, n=97 ) were assigned to fixed-time AI at 72 or 80 h by age, body condition score (BCS), days postpartum (DPP), AI technician, and sire. All cows were synchronized with the MGA Select protocol, consisting of oral administration of melengestrol acetate (MGA; 0.5mg/hd per day) for 14 days, GnRH (Cysotrelin, 100 microg, i.m.; Day 26) 12 days after MGA withdrawal, followed in 7 days with PGF(2alpha) (PG; Lutalyse, 25mg i.m.; Day 33). Cows were inseminated at 72 h ( n=108 ) or 80 h ( n=103 ) after PG and GnRH (100 microg) was given at insemination. Location was not significant and, therefore, was removed from the model. Mean BCS ( 5.2+/-0.1, 72 h; 5.3+/-0.1, 80 h) and DPP ( 34+/-2, 72 h; 35+/-2, 80 h) did not differ ( P>0.1 ) between treatments. Serum progesterone concentrations 7 and 1 day prior to MGA were used to determine pre-treatment cyclicity: cows with at least one sample with progesterone > or =1 ng/ml were defined as cyclic (33/108, 31%, 72 h, versus 32/103, 31%, 80 h; P>0.1). Cows with serum progesterone concentrations > or =1 ng/ml on the day of PG were defined as responding to the synchronization protocol (74/108 (69%), 72 h versus 69/103 (67%), 80 h; P>0.1 ). Although pregnancy rates were higher ( P<0.05 ) for cows inseminated at 72 h (69/108, 64%) versus 80 h (52/103, 50%) after PG, pregnancy rates at the end of the breeding season did not differ ( P>0.1 ) between treatments (98/108 (91%), 72 h; 88/103 (85%), 80 h). In conclusion, pregnancy rates were higher when postpartum beef cows synchronized with the MGA Select protocol were inseminated at 72 h versus 80 h after PG.  相似文献   

15.
16.
Methods to measure resistance to inhibition by organophosphorus toxicants (OP) for mutants of butyrylcholinesterase (EC 3.1.1.8; BChE) and acetylcholinesterase (EC 3.1.1.7; AChE) enzymes were devised. Wild-type cholinesterases were completely inhibited by 0.1 mM echothiophate or 0.001 mM diisopropylfluorophosphate, but human BChE mutants G117H, G117D, L286H, and W231H and snake AChE mutant HFQT retained activity. Tissues containing a mixture of cholinesterases could be assayed for amount of G117H BChE. For example, the serum of transgenic mice expressing human G117H BChE contained 0.5 microg/ml human G117H BChE, 2 microg/ml wild-type mouse BChE, and 0.06 microg/ml wild-type mouse AChE. The oligomeric structure of G117H BChE in the serum of transgenic mice was determined by nondenaturing gel electrophoresis followed by staining for butyrylthiocholine hydrolysis activity in the presence of 0.1 mM echothiophate. Greater than 95% of the human G117H BChE in transgenic mouse serum was a tetramer. To visualize the distribution of G117H BChE in tissues of transgenic mice, sections of small intestine were treated with echothiophate and then stained for BChE activity. Both wild-type and G117H BChE were in the epithelial cells of the villi. These assays can be used to identify OP-resistant cholinesterases in culture medium and in animal tissues.  相似文献   

17.
The sialidase activities with GM3 ganglioside and sialyllactitol were demonstrated in the conditioned medium of human fibroblasts. pH versus activity profiles of conditioned medium with GM3 as substrate suggested the presence of two sialidases with optimal activities at pH 4.5 and pH 6.5. The GM3 sialidase activity at pH 6.5 was suppressed in the medium of contact-inhibited cells. This sialidase may function in the metabolism of cell surface GM3 since there was a selective loss of labeled sialic acid from GM3 at different times of incubation after pulse-labeling with a radioactive sialic acid precursor ([3H]N-acetyl-mannosamine) and a radioactive ceramide precursor ([14C]serine). In addition, a sialidase inhibitor, 2-deoxy-2, 3-dehydro-N-acetyl-neuraminic acid (NeuAc-2-en) resulted in a reversible growth inhibitory effect and the suppression of the sialidase activity in the medium. We have speculated that GM3 hydrolysis on the cell surface by the sialidase may be coordinated with the cell cycle and may be at its maximum during early in the G1 phase.  相似文献   

18.
The effect of regucalcin, a regulatory protein in intracellular signaling pathway, on cell death was investigated by using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin (RC)/pCXN2 transfectants were cultured for 72 h in medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. After culture for 72 h, cells were further cultured for 12-72 h in medium without FBS containing either vehicle or lipopolysaccharide (LPS; 0.1 or 1.0 microg/ml). The number of wild-type cells was significantly decreased by culture for 24 or 48 h in the presence of LPS (0.1 or 1.0 microg/ml). The effect of LPS (0.1 or 1.0 microg/ml) in decreasing the number of hepatoma cells was significantly prevented in transfectants overexpressing regucalcin. However, the culture with LPS (0.1 or 1.0 microg/ml) for 72 h caused a significant decrease in cell number of transfectants. Ca(2+)/calmodulin-dependent nitric oxide (NO) synthase activity was significantly decreased by culture with LPS (1.0 microg/ml) for 24-72 h of wild-type cells. This decrease was significantly prevented in transfectants. LPS (0.1 or 1.0 microg/ml)-induced decrease in the number of wild-type cells was significantly prevented by culture with caspase-3 inhibitor (10(-8) M). Moreover, the number of wild-type cells was significantly decreased by culture with PD 98059 (10(-6) M), dibucaine (10(-6) M), or staurosporine (10(-6) M), which is an inhibitor of various protein kinases. The effect of PD 98059 or dibucaine on the number of wild-type cells was not observed in transfectants, although the effect of staurosporine was seen in transfectants. Culture with Bay K 8644 (2.5 x 10(-6) M), an agonist of Ca(2+) entry in cells, caused a significant decrease in the number of wild-type cells. Such an effect was not seen in transfectants. The presence of LPS did not significantly decrease the number of wild-type cells in the presence of Bay K 8644. Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with Bay K 8644, and this DNA fragmentation was significantly prevented in transfectants. This study demonstrates that overexpression of regucalcin has a suppressive effect on cell death induced by LPS or various intracellular signaling-related factors.  相似文献   

19.
Improvement of the ability to maintain germinal vesicle stage oocytes in vitro is important for the acquisition of developmental competence. Maintaining oocytes at this stage without damaging their quality would allow synchronization of maturation and homogenization of the oocytes population. More investigations are needed to better understand how the oocyte cell cycle is blocked without consequences to future developmental competence. This study tested the efficacy of pharmacological inhibitors of the G2/M cell cycle transition in keeping porcine oocytes at the germinal vesicle (GV) stage and the reversibility of this inhibition. Porcine cumulus-oocyte complexes (COCs) were thus incubated without any hormones for 24 h in the presence or absence of tested inhibitors: 6-DMAP (protein kinase inhibitor, 2 mM), cycloheximide (protein synthesis inhibitor, 2 microg/ml), roscovitine (cyclin-dependent kinase inhibitor, 50 microM) and butyrolactone I (cyclin-dependent kinase inhibitor, 50 microM). Cumulus-oocyte complexes cultured with any of the inhibitors were significantly blocked at the GV stage. The inhibitory effect varied according to the products, with cycloheximide being the most efficient. Reversibility of the pharmacological inhibitors was assessed by culturing COCs an additional 24 h in inhibitor-free culture medium. Examination of oocytes revealed that the inhibitory effect was fully reversible. This study suggests that 6-DMAP, cycloheximide, roscovitine and butyrolactone I can be use to block meiotic resumption in porcine oocytes in NCSU culture medium.  相似文献   

20.
Suspension-cultured mouse plasmacytoma cells (MPC-11) were accumulated in the late G1 phase by exposure to isoleucine-deficient medium for 20- 24 h. The arrested culture was fed with complete medium enabling the cells to continue the cell cycle synchronously, undergo mitosis, and enter a second cycle of growth. This method of synchronization left the protein-synthesizing ability intact as judged by the polysome profile and the capacity of the cells to incorporate labeled amino acids into protein after the restoration of isoleucine. After incubation in isoleucine-deficient medium and the addition of isoleucine to the culture, cells entered the S phase after a short lag, as judged by [3H]thymidine incorporation into nucleic acid and by spectrophotometric measurement of nuclear DNA. The cells were in mitosis between 12 and 18 h as judged by the increase in cell count and analysis of cell populations on albumin gradients. Synthesis and secretion of light- chain immunoglobulin were maximal in the late G1/early S phase of the first cycle. During late S phase, G2 phase, and mitosis, both synthesis and secretion were observed to be at a low level; however, immediately after motosis the cells which then entered the G1 phase apparently commenced synthesis of light chain immunoglobulin straight away, although secretion of labeled material remained at a low level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号