首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Association of HPC2/ELAC2 genotypes and prostate cancer   总被引:11,自引:0,他引:11       下载免费PDF全文
HPC2/ELAC2 has been identified as a prostate cancer (CaP) susceptibility gene. Two common missense variants in HPC2/ELAC2 have been identified: a Ser-->Leu change at amino acid 217, and an Ala-->Thr change at amino acid 541. Tavtigian et al. reported that these variants were associated with CaP in a sample of men drawn from families with hereditary CaP. To confirm this report in a sample unselected for family history, we studied 359 incident CaP case subjects and 266 male control subjects that were frequency matched for age and race and were identified from a large health-system population. Among control subjects, the Thr541 frequency was 2.9%, and the Leu217 frequency was 31.6%, with no significant differences in frequency across racial groups. Thr541 was only observed in men who also carried Leu217. The probability of having CaP was increased in men who carried the Leu217/Thr541 variants (odds ratio = 2.37; 95% CI 1.06-5.29). This risk did not differ significantly by family history or race. Genotypes at HPC2/ELAC2 were estimated to cause 5% of CaP in the general population of inference. These results suggest that common variants at HPC2/ELAC2 are associated with CaP risk in a sample unselected for family history or other factors associated with CaP risk.  相似文献   

2.
HPC2 variants and screen-detected prostate cancer   总被引:2,自引:0,他引:2       下载免费PDF全文
Two studies have reported significant associations between susceptibility to prostate cancer and two common missense variants of the HPC2/ELAC2 gene, with estimated relative risks in the range of two- to threefold. We investigated whether these polymorphisms could be informative in the prediction of the presence of prostate cancer in men undergoing prostatic biopsy for the evaluation of an elevated serum-PSA level (> or = 4.0 ng/ml). We genotyped 944 men who underwent a prostate biopsy at our institution, as well as a control population of 922 healthy, unselected women from the same population. The prevalence of the HPC2 Ala541Thr allele was similar in men with prostate cancer (6.3%), men with other prostatic conditions (6.8%), and healthy women (6.3%) (P = .83). We conclude that HPC2 genotyping is unlikely to be a useful adjunct to PSA in the prediction of the presence of biopsy-detected prostate cancer in asymptomatic men.  相似文献   

3.
To test the hypothesis that variation in the putative prostate cancer susceptibility gene ELAC2 contributes to the elevated risk of prostate cancer in Afro-Caribbean males from Tobago, we genotyped the S217L and A514T polymorphisms, previously reported to be associated with prostate cancer risk in a large sample of cases and controls. The frequency of the high-risk Leu allele at the S217L site was the same in cases and controls. Both cases and controls were homozygous for the low-risk Ala allele at the A514T site. In addition, we sequenced the exons and 3'- and 5'-flanking regions of ELAC2 in 24 individuals with histologically confirmed prostate cancer. We identified 17 new single nucleotide polymorphisms. An A(-1196)T polymorphism, which alters a predicted TATA box consensus sequence, was tested in cases and controls, and no significant difference in allele or genotype frequencies was observed. The absence of ELAC2 mutations and lack of association between polymorphisms in ELAC2 and prostate cancer in cases and controls leads us to conclude that ELAC2 does not contribute significantly to the elevated prevalence of prostate cancer in Afro-Caribbean males of Tobago.  相似文献   

4.
Multiple lines of evidence have implicated the short arm of chromosome 8 as harboring genes important in prostate carcinogenesis. Although most of this evidence comes from the identification of frequent somatic alterations of 8p loci in prostate cancer cells (e.g., loss of heterozygosity), studies have also suggested a role for 8p genes in mediation of inherited susceptibility to prostate cancer. To further examine this latter possibility, we performed linkage analyses, in 159 pedigrees affected by hereditary prostate cancer (HPC), using 24 markers on the short arm of chromosome 8. In the complete set of families, evidence for prostate cancer linkage was found at 8p22-23, with a peak HLOD of 1.84 (P=.004), and an estimate of the proportion of families linked (alpha) of 0.14, at D8S1130. In the 79 families with average age at diagnosis >65 years, an allele-sharing LOD score of 2.64 (P=.0005) was observed, and six markers spanning a distance of 10 cM had LOD scores >2.0. Interestingly, the small number of Ashkenazi Jewish pedigrees (n=11) analyzed in this study contributed disproportionately to this linkage. Mutation screening in HPC probands and association analyses in case subjects (a group that includes HPC probands and unrelated case subjects) and unaffected control subjects were carried out for the putative prostate cancer-susceptibility gene, PG1, previously localized to the 8p22-23 region. No statistical differences in the allele, genotype, or haplotype frequencies of the SNPs or other sequence variants in the PG1 gene were observed between case and control subjects. However, case subjects demonstrated a trend toward higher homozygous rates of less-frequent alleles in all three PG1 SNPs, and overtransmission of a PG1 variant to case subjects was observed. In summary, these results provide evidence for the existence of a prostate cancer-susceptibility gene at 8p22-23. Evaluation of the PG1 gene and other candidate genes in this area appears warranted.  相似文献   

5.
Two genes HPC/ELAC-2 and AAT were studied in north Indian population. HPC/ELAC-2 was studied in prostate cancer cases and AAT was studied in COPD patients. HPC/ELAC-2 is considered as an important cancer-susceptibility gene in prostate cancer. There are two common polymorphisms of this gene, i.e., Ser217Leu and Ala541Thr. Alpha 1 antitrypsin is a highly polymorphic anti-elastase enzyme, especially active in the protection of alveoli and liver. In the present study, we observed the distribution of two deficient alleles PiZ and Pi S in COPD patients. We extracted the DNA from 157 prostate cancer cases, 200 COPD patients, 170 BPH and 370 healthy controls. The polymorphisms were studied by PCR–RFLP technique. The mutant genotype (Leu/Leu) of HPC/ELAC-2 was present in 9.6, 7.6 and 5.9% of BPH, cancer cases and healthy controls, respectively. Higher risk of Ser/Leu as well as Leu/Leu had shown when compared to healthy controls. That was about 1.5 and 1.7-fold (OR = 1.55; 95% CI = 0.96–2.51; OR = 1.70; 95% CI = 0.74–3.92), respectively. Risk was found to be increased in smokers and those consuming non-vegetarian diet. Our results suggest that the HPC/ELAC-2 polymorphisms, especially in localized cases, could help to predict prostate cancer risk and confirm its high prevalence of the leu/leu allele in north Indian population. Considering heterozygous PiZ genotype, we obtained an OR of 3.82 (P = 0.03). Multivariate analysis adjusted by age sex and drinking habit showed 4.15-fold increased risk for COPD in PiZ heterozygous individuals. No increased risk was observed in the individuals carrying PiS alleles.  相似文献   

6.
Frequent loss of heterogeneity in prostate cancer cells and linkage studies of families affected by hereditary prostate cancer (HPC) have implied that the short arm of chromosome 8, specifically 8p22-23, may harbor a prostate-cancer-susceptibility gene. In a recent study, seven potentially important mutations in the macrophage scavenger receptor 1 gene (MSR1), located at 8p22, were observed in families affected with HPC, and an indication of co-segregation between these mutations and prostate cancer was reported. In an attempt to confirm linkage at 8p22-23, we performed linkage analyses in 57 families affected with HPC (ascertained throughout Sweden) by using 13 markers on the short arm of chromosome 8. In the complete set of families, evidence for prostate cancer linkage was observed at 8p22-23, with a peak hold of 1.08 (P=0.03), observed at D8S1731, approximately 1 cM centromeric to the MSR1 gene. At marker D8S1135, the closest marker to MSR1, a hlod of 1.07 (P=0.03) was observed. Evidence of linkage was seen in families with early-onset HPC and in families with a small number of affected individuals. The peak multipoint non-parametric linkage score was 2.01 (P=0.03) at D8S552 in the 14 pedigrees with mean age at onset <65 years, and 2.25 (P=0.01) at D8S1731 in the 36 pedigrees with fewer than five affected family members. Thus, we have confirmed evidence for prostate cancer linkage at 8p22-23. Follow-up studies to evaluate the possible association between prostate cancer and genes in this region, especially the MSR1 gene, are warranted.  相似文献   

7.
Prevalent mutations in prostate cancer   总被引:3,自引:0,他引:3  
Quantitative and structural genetic alterations cause the development and progression of prostate cancer. A number of genes have been implicated in prostate cancer by genetic alterations and functional consequences of the genetic alterations. These include the ELAC2 (HPC2), MSR1, and RNASEL (HPC1) genes that have germline mutations in familial prostate cancer; AR, ATBF1, EPHB2 (ERK), KLF6, mitochondria DNA, p53, PTEN, and RAS that have somatic mutations in sporadic prostate cancer; AR, BRCA1, BRCA2, CHEK2 (RAD53), CYP17, CYP1B1, CYP3A4, GSTM1, GSTP1, GSTT1, PON1, SRD5A2, and VDR that have germline genetic variants associated with either hereditary and/or sporadic prostate cancer; and ANXA7 (ANX7), KLF5, NKX3-1 (NKX3.1), CDKN1B (p27), and MYC that have genomic copy number changes affecting gene function. More genes relevant to prostate cancer remain to be identified in each of these gene groups. For the genes that have been identified, most need additional genetic, functional, and/or biochemical examination. Identification and characterization of these genes will be a key step for improving the detection and treatment of prostate cancer.  相似文献   

8.
A gene or genes on chromosome 8p22-23 have been implicated in prostate carcinogenesis by the observation of frequent deletions of this region in prostate cancer cells. More recently, two genetic linkage studies in hereditary prostate cancer (HPC) families suggest that germline variation in a gene in this region may influence prostate cancer susceptibility as well. DLC1 (deleted in liver cancer), a gene in this interval, has been proposed as a candidate tumor suppressor gene because of its homology (86% similarity) with rat p122 RhoGAP, which catalyzes the conversion of active GTP-bound rho complex to the inactive GDP-bound form, and thus suppresses Ras-mediated oncogenic transformation. A missense mutation and three intronic insertions/deletions in 126 primary colorectal tumors have been previously identified. However, there are no reports of DLC1 mutation screening in prostate tumors or in germ line DNA of prostate cancer patients. In this study, we report the results of the first mutation screen and association study of DLC1 in genomic DNA samples from hereditary and sporadic prostate cancer patients. The PCR products in the 5' UTR, all 14 exons, exon-intron junctions, and 3' UTR were directly sequenced in 159 HPC probands. Eight exonic nucleotide polymorphisms (SNPs) were identified, only one of which resulted in an amino acid change. Twenty-three other SNPs were identified in intronic regions. Seven informative SNPs that spanned the complete DLC1 gene were genotyped in an additional 249 sporadic cases and 222 unaffected controls. No significant difference in the allele and genotype frequencies were observed among HPC probands, sporadic cases, and unaffected controls. These results suggest that DLC1 is unlikely to play an important role in prostate cancer susceptibility.  相似文献   

9.
10.
tRNA 3′ processing endoribonuclease (3′ tRNase) is an enzyme responsible for the removal of a 3′ trailer from precursor tRNA (pre-tRNA). We purified ~85 kDa 3′ tRNase from pig liver and determined its partial sequences. BLAST search of them suggested that the enzyme was the product of a candidate human prostate cancer susceptibility gene, ELAC2, the biological function of which was totally unknown. We cloned a human ELAC2 cDNA and expressed the ELAC2 protein in Escherichia coli. The recombinant ELAC2 was able to cleave human pre-tRNAArg efficiently. The 3′ tRNase activity of the yeast ortholog YKR079C was also observed. The C-terminal half of human ELAC2 was able to remove a 3′ trailer from pre-tRNAArg, while the N‐terminal half failed to do so. In the human genome exists a gene, ELAC1, which seems to correspond to the C-terminal half of 3′ tRNase from ELAC2. We showed that human ELAC1 also has 3′-tRNase activity. Furthermore, we examined eight ELAC2 variants that seem to be associated with the occurrence of prostate cancer for 3′-tRNase activity. Seven ELAC2 variants which contain one to three amino acid substitutions showed efficient 3′-tRNase activities, while one truncated variant, which lacked a C-terminal half region, had no activity.  相似文献   

11.
Chronic obstructive pulmonary disease (COPD) is a complex human disease likely influenced by multiple genes, cigarette smoking, and gene-by-smoking interactions, but only severe alpha 1-antitrypsin deficiency is a proven genetic risk factor for COPD. Prior linkage analyses in the Boston Early-Onset COPD Study have demonstrated significant linkage to a key intermediate phenotype of COPD on chromosome 2q. We integrated results from murine lung development and human COPD gene-expression microarray studies with human COPD linkage results on chromosome 2q to prioritize candidate-gene selection, thus identifying SERPINE2 as a positional candidate susceptibility gene for COPD. Immunohistochemistry demonstrated expression of serpine2 protein in mouse and human adult lung tissue. In family-based association testing of 127 severe, early-onset COPD pedigrees from the Boston Early-Onset COPD Study, we observed significant association with COPD phenotypes and 18 single-nucleotide polymorphisms (SNPs) in the SERPINE2 gene. Association of five of these SNPs with COPD was replicated in a case-control analysis, with cases from the National Emphysema Treatment Trial and controls from the Normative Aging Study. Family-based and case-control haplotype analyses supported similar regions of association within the SERPINE2 gene. When significantly associated SNPs in these haplotypic regions were included as covariates in linkage models, LOD score attenuation was observed most markedly in a smokers-only linkage model (LOD 4.41, attenuated to 1.74). After the integration of murine and human microarray data to inform candidate-gene selection, we observed significant family-based association and independent replication of association in a case-control study, suggesting that SERPINE2 is a COPD-susceptibility gene and is likely influenced by gene-by-smoking interaction.  相似文献   

12.
The RNASEL gene (2',5'-oligoisoadenylate-synthetase dependent) encodes a ribonuclease that mediates the antiviral and apoptotic activities of interferons. The RNASEL gene maps to the hereditary-prostate-cancer (HPC)-predisposition locus at 1q24-q25 (HPC1) and was recently shown to harbor truncating mutations in two families with linkage to HPC1. Here, we screened for RNASEL germline mutations in 66 Finnish patients with HPC, and we determined the frequency of the changes in the index patients from 116 families with HPC, in 492 patients with unselected prostate cancer (PRCA), in 223 patients with benign prostatic hyperplasia (BPH), and in 566 controls. A truncating mutation, E265X, was found in 5 (4.3%) of the 116 patients from families with HPC. This was significantly higher (odds ratio [OR] =4.56; P=.04) than the frequency of E265X in controls (1.8%). The highest mutation frequency (9.5%) was found in patients from families with four or more affected members. Possible segregation was detected only in a single family. However, the median age at disease onset for E265X carriers was 11 years less than that for noncarriers in the same families. In addition, of the four missense variants found, R462Q showed an association with HPC (OR=1.96; P=.07). None of the variants showed any differences between controls and either patients with BPH or patients with PRCA. We conclude that, although RNASEL mutations do not explain disease segregation in Finnish families with HPC, the variants are enriched in families with HPC that include more than two affected members and may also be associated with the age at disease onset. This suggests a possible modifying role in cancer predisposition. The impact that the RNASEL sequence variants have on PRCA burden at the population level seems small but deserves further study.  相似文献   

13.
Androgen receptor (AR) has long been hypothesized to play an important role in prostate cancer etiology. Two trinucleotide repeat polymorphisms (CAG and GGC repeats in exon 1 of the AR gene) have been investigated as risk factors for prostate cancer in several studies. However, the results are inconclusive, probably because of the variations of study designs, characteristics of study samples, and choices of analytical methods. In this study, we evaluated evidence for linkage and association between the two AR repeats and prostate cancer by using the following comprehensive approaches: (1) a combination of linkage and association studies, (2) a test for linkage by parametric analysis and the male-limited X-linked transmission/disequilibrium test (XLRC-TDT), (3) a test for association by using both population-based and family-based tests, and (4) a study of both hereditary and sporadic cases. A positive but weak linkage score (HLOD=0.49, P=0.12) was identified in the AR region by parametric analysis; however, stronger evidence for linkage in the region, especially at the GGC locus, was observed in the subset of families whose proband had < or = 16 GGC repeats (HLOD=0.70, P=0.07) or by using XLRC-TDT ( z'=2.65, P=0.008). Significantly increased frequencies of the < or = 16 GGC repeat alleles in 159 independent hereditary cases (71%) and 245 sporadic cases (68%) cases compared with 211 controls (59%) suggested that GGC repeats were associated with prostate cancer ( P=0.02). Evidence for the association between the < or = 16 GGC repeats and prostate cancer risk was stronger with XLRC-TDT ( z'=2.66, P=0.007). No evidence for association between the CAG repeats and prostate cancer risk was observed. The consistent results from both linkage and association studies strongly implicate the GGC repeats in the AR as a prostate cancer susceptibility gene. Further studies on this polymorphism in other independent data sets and functional analysis of the GGC repeat length on AR activity are warranted.  相似文献   

14.
The potential prostate cancer susceptibility gene ELAC2 has a Caenorhabditis elegans homolog (which we call hoe-1, for homolog of ELAC2). We have explored the biological role of this gene using RNAi to reduce gene activity. We found that worms subjected to hoe-1 RNAi are slow-growing and sterile. The sterility results from a drastic reduction in germline proliferation and cell-cycle arrest of germline nuclei. We found that hoe-1 is required for hyperproliferation phenotypes seen with mutations in three different genes, suggesting hoe-1 may be generally required for germline proliferation. We also found that reduction of hoe-1 by RNAi suppresses the multivulva (Muv) phenotype resulting from activating mutations in ras and that this suppression is likely to be indirect. This is the first demonstration of a biological role for this class of proteins in a complex eukaryote and adds important information when considering the role of ELAC2 in prostate cancer.  相似文献   

15.
Our previous genomewide linkage scan of 428 nuclear families (GeneQuest) identified a significant genetic susceptibility locus for premature myocardial infarction (MI) on chromosome 1p34-36. We analyzed candidate genes in the locus with a population-based association study involving probands with premature coronary artery disease (CAD) and/or MI from the GeneQuest families (381 cases) and 560 controls without stenosis detectable by coronary angiography. A nonconservative substitution, R952Q, in LRP8 was significantly associated with susceptibility to premature CAD and/or MI by use of both population-based and family-based designs. Three additional white populations were used for follow-up replication studies: another independent cohort of CAD- and/or MI-affected families (GeneQuest II: 441 individuals from 22 pedigrees), an Italian cohort with familial MI (248 cases) and 308 Italian controls, and a separate Cleveland GeneBank cohort with sporadic MI (1,231 cases) and 560 controls. The association was significantly replicated in two independent populations with a family history of CAD and/or MI, the GeneQuest II family-based replication cohort and the Italian cohort, but not in the population with sporadic disease. The R952Q variant of LRP8 increased activation of p38 mitogen-activated protein kinase by oxidized low-density lipoprotein. This extensive study, involving multiple independent populations, provides the first evidence that genetic variants in LRP8 may contribute to the development of premature and familial CAD and MI.  相似文献   

16.
RNASEL is a 2-5A-dependent endoribonuclease that is a component of the interferon-induced 2-5A system, which plays a crucial role in the antiviral and apoptotic activities of interferons. In humans, many polymorphic sites within the RNASEL gene have been associated with an increased risk of developing prostate cancer. Here, we obtained coding sequences for the RNASEL gene from 11 primates and found evidence that positive selection has operated on the C-terminal endoribonuclease domain and the N-terminal ankyrin repeats domain of the protein, domains that directly interact with virus (i.e., ankyrin repeats are responsible for receiving environmental signals, and the endoribonuclease catalyses the destruction of the pathogenic viral RNA). To extend this finding, we studied variation within this gene in modern human populations by resequencing alleles from 144 individuals representing four separate populations. Interestingly, the frequency of the 541D allele shows a negative association with the incidence rate of prostate cancer in worldwide populations, and haplotypes containing the 541D polymorphisms demonstrate signatures of positive selection. RNASEL variants having the 541D haplotype likely have a greater ability to defend against infections by viruses, thus the loss of this activity may be associated with the development of prostate cancer. We provide evidence that positive selection has operated on the RNASEL gene, and its evolution is correlated with its function in pathogen defense and cancer association.  相似文献   

17.
Craig C. Teerlink  Stephen N. Thibodeau  Shannon K. McDonnell  Daniel J. Schaid  Antje Rinckleb  Christiane Maier  Walther Vogel  Geraldine Cancel-Tassin  Christophe Egrot  Olivier Cussenot  William D. Foulkes  Graham G. Giles  John L. Hopper  Gianluca Severi  Ros Eeles  Douglas Easton  Zsofia Kote-Jarai  Michelle Guy  Kathleen A. Cooney  Anna M. Ray  Kimberly A. Zuhlke  Ethan M. Lange  Liesel M. FitzGerald  Janet L. Stanford  Elaine A. Ostrander  Kathleen E. Wiley  Sarah D. Isaacs  Patrick C. Walsh  William B. Isaacs  Tiina Wahlfors  Teuvo Tammela  Johanna Schleutker  Fredrik Wiklund  Henrik Grönberg  Monica Emanuelsson  John Carpten  Joan Bailey-Wilson  Alice S. Whittemore  Ingrid Oakley-Girvan  Chih-Lin Hsieh  William J. Catalona  S. Lilly Zheng  Guangfu Jin  Lingyi Lu  Jianfeng Xu  Nicola J. Camp  Lisa A. Cannon-Albright 《Human genetics》2014,133(3):347-356
Previous GWAS studies have reported significant associations between various common SNPs and prostate cancer risk using cases unselected for family history. How these variants influence risk in familial prostate cancer is not well studied. Here, we analyzed 25 previously reported SNPs across 14 loci from prior prostate cancer GWAS. The International Consortium for Prostate Cancer Genetics (ICPCG) previously validated some of these using a family-based association method (FBAT). However, this approach suffered reduced power due to the conditional statistics implemented in FBAT. Here, we use a case–control design with an empirical analysis strategy to analyze the ICPCG resource for association between these 25 SNPs and familial prostate cancer risk. Fourteen sites contributed 12,506 samples (9,560 prostate cancer cases, 3,368 with aggressive disease, and 2,946 controls from 2,283 pedigrees). We performed association analysis with Genie software which accounts for relationships. We analyzed all familial prostate cancer cases and the subset of aggressive cases. For the familial prostate cancer phenotype, 20 of the 25 SNPs were at least nominally associated with prostate cancer and 16 remained significant after multiple testing correction (p ≤ 1E ?3) occurring on chromosomal bands 6q25, 7p15, 8q24, 10q11, 11q13, 17q12, 17q24, and Xp11. For aggressive disease, 16 of the SNPs had at least nominal evidence and 8 were statistically significant including 2p15. The results indicate that the majority of common, low-risk alleles identified in GWAS studies for all prostate cancer also contribute risk for familial prostate cancer, and that some may contribute risk to aggressive disease.  相似文献   

18.
Rare germline mutations of macrophage scavenger receptor 1 (MSR1) gene were reported to be associated with prostate cancer risk in families with hereditary prostate cancer (HPC) and in patients with non-HPC (Xu et al. 2002). To further evaluate the role of MSR1 in prostate cancer susceptibility, at Johns Hopkins Hospital, we studied five common variants of MSR1 in 301 patients with non-HPC who underwent prostate cancer treatment and in 250 control subjects who participated in prostate cancer-screening programs and had normal digital rectal examination and PSA levels (<4 ng/ml). Significantly different allele frequencies between case subjects and control subjects were observed for each of the five variants (P value range.01-.04). Haplotype analyses provided consistent findings, with a significant difference in the haplotype frequencies from a global score test (P=.01). Because the haplotype that is associated with the increased risk for prostate cancer did not harbor any of the known rare mutations, it appears that the observed association of common variants and prostate cancer risk are independent of the effect of the known rare mutations. These results consistently suggest that MSR1 may play an important role in prostate carcinogenesis.  相似文献   

19.
Several genetic predisposition loci for prostate cancer have been identified through linkage analysis, and it is now generally recognized that no single gene is responsible for more than a small proportion of prostate cancers. However, published confirmations of these loci have been few, and failures to confirm have been frequent. The genetic etiology of prostate cancer is clearly complex and includes significant genetic heterogeneity, phenocopies, and reduced penetrance. Powerful analyses that involve robust statistics and methods to reduce genetic heterogeneity are therefore necessary. We have performed linkage analysis on 143 Utah pedigrees for the previously published Xq27-28 (HPCX) prostate cancer susceptibility locus. We employed a robust multipoint statistic (TLOD) and a novel splitting algorithm to reduce intra-familial heterogeneity by iteratively removing the top generation from the large Utah pedigrees. In a dataset containing pedigrees having no more than five generations, we observed a multipoint TLOD of 2.74 (P=0.0002), which is statistically significant after correction for multiple testing. For both the full-structure pedigrees (up to seven generations) and the smaller sub-pedigrees, the linkage evidence was much reduced. This study thus represents the first significant confirmation of HPCX (Xq27-28) and argues for the continued utility of large pedigrees in linkage analyses for complex diseases.  相似文献   

20.
Prostate cancer linkage studies have suggested the existence of a prostate cancer susceptibility gene on chromosome 17q21–22. We now report the results of an extended linkage analysis including 95 new multiplex prostate cancer families and 9 additional microsatellite markers resulting in a maximum LOD score of 2.99 at approximately 81–82 cM for all 453 pedigrees. Results from these 95 new pedigrees provide additional support for a chromosome 17q21–22 prostate cancer susceptibility gene. Inclusion of the 9 additional markers significantly reduced the size of the candidate region, as defined using a 1-LOD support interval, especially when focusing analyses on subsets of pedigrees with four or more confirmed affecteds or average age of diagnosis less than or equal to 65 years. A novel subset analysis of only those families (n = 147) that had four or more prostate cancer cases and an average age of prostate cancer diagnosis ≤ 65 years results in a maximum LOD score of 5.49 at 78 cM with a 1-LOD support interval of 10 cM. This large set of pedigrees with four more prostate cancer cases characterized by early-onset disease will serve as a useful resource for identifying the putative 17q21–22 prostate cancer susceptibility gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号