首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Kikuchi  Y Goto  K Hamaguchi 《Biochemistry》1986,25(8):2009-2013
The constant (CL) fragment of the immunoglobulin light chain contains only one intrachain disulfide bond buried in the interior of the molecule. The kinetics of reduction with dithiothreitol of the disulfide bond were studied at various concentrations of guanidine hydrochloride at pH 8.0 and 25 degrees C. It was found that the disulfide bond is reduced even in the absence of guanidine hydrochloride. The results of the reduction kinetics were compared with those of the unfolding and refolding kinetics of the CL fragment previously reported [Goto, Y., & Hamaguchi, K. (1982) J. Mol. Biol. 156, 891-910]. It was shown that the reduction of the disulfide bond proceeds through a species with a conformation very similar to that of the fully unfolded one and that the CL fragment undergoes global unfolding transition even in water.  相似文献   

2.
The conformation of the constant fragment of the immunoglobulin light chain in which the intrachain disulfide bond is replaced by the bond S-Hg-S (CL-Hg fragment), was as compact as that of the intact CL fragment, but its stability to guanidine hydrochloride was lower than that of the intact CL fragment [Goto, Y. & Hamaguchi, K. (1986) Biochemistry in press]. The kinetics of reversible unfolding and refolding of the CL-Hg fragment by guanidine hydrochloride were studied and compared with those for the intact CL and reduced CL fragments [Goto, Y. & Hamaguchi, K. (1982) J. Mol. Biol. 156, 891-910, 911-926]. The unfolding kinetics were explained on the basis of a three-species mechanism, U1----U2----F, where U1 and U2 are respectively slow-folding and fast-folding species of unfolded protein, and F is folded protein. However, an additional isomerization, though its contribution to the overall reaction process is small, had to be taken into account to explain the refolding kinetics. The kinetic properties of interconversion between U1 and U2 were similar to those for the intact CL and reduced CL fragments. This suggested that the same prolyl residue is involved in the isomerization reactions in the unfolded states of the intact CL, reduced CL, and CL-Hg fragments. The rate constant for the unfolding process, F to U2, was about 20 times greater than those for the intact CL and reduced CL fragments, while the rate constant for the refolding process, U2 to F, lay between the values for the intact CL and the reduced CL fragment. The free energy profiles of unfolding and refolding of the intact CL, reduced CL, and CL-Hg fragments were compared.  相似文献   

3.
A Ishiwata  Y Kawata  K Hamaguchi 《Biochemistry》1991,30(31):7766-7771
Constant fragments with different carboxyl terminals, CL(109-211), CL(109-207), and CL-(109-200), were prepared by limited carboxypeptidase P or Y proteolysis of the constant fragment, CL-(109-214), of a type lambda immunoglobulin light chain, and their conformations and stabilities, and formation of the disulfide bond from the reduced fragments, were studied. No change in conformation or stability was observed on removal of three residues from the C-terminal end. Removal of seven or more residues from the C-terminal end destabilized the CL fragment. The rate of disulfide bond formation from reduced CL(109-207) was about 7 times faster than that for CL(109-214). These findings suggest that elongation of the polypeptide chain at least beyond the 207th residue is necessary for folding of the CL fragment into a definite conformation.  相似文献   

4.
The conformation and stabilities of the CL fragment isolated from a type lambda Bence Jones protein and the fragment in which the intrachain disulfide bond had been reduced were studied by measuring CD, fluorescence, and ultraviolet absorption. The results indicated that no great conformational change occurs on reduction of the disulfide, unless the SH groups are alkylated. Intact CL was more resistant than reduced CL to guanidine hydrochloride. The denaturation curves were analyzed using an equation based on the binding of guanidine hydrochloride and the free energy changes of denaturation in the absence of the denaturant were estimated as about 6 kcal.mol-1 for intact CL and about 1.8 kcal.mol-1 for reduced CL. The difference in stability between intact CL and reduced CL was explained to a great extent in terms of the entropy change associated with reduction of the intrachain disulfide bond of the fragment in the denatured state.  相似文献   

5.
Regeneration by glutathione of the constant fragment of the immunoglobulin light chain was studied in the absence and presence of 8 m-urea. The species that appeared during the reaction of the reduced constant fragment with oxidized glutathione were trapped by alkylation with iodoacetamide and identified by electrophoresis in 15% polyacrylamide gel at pH 9.5. The kinetics of the reactions starting from various species formed during the reaction of the reduced constant fragment were also studied, and the overall reaction kinetics of the formation of the intrachain disulfide bond in the constant fragment were established in the absence and presence of urea.The reaction of the reduced constant fragment with oxidized glutathione was much slower but the yield of the constant fragment with the disulfide bond was much higher in the absence than in the presence of 8 m-urea. The slowness of the reaction in the absence of urea is due to the two cysteinyl residues of the reduced constant fragment being buried in the interior of the molecule and because oxidized glutathione is capable of reacting with the thiols only in the opened form of the protein molecule. The high yield is due to the cysteinyl thiol and the mixed disulfide in the intermediate forming an intrachain disulfide bond through thiol-disulfide interchange, the reaction sites being exposed to solvent and located at the appropriate proximity. These findings indicate first, that the appropriate proximity of a pair of cysteinyl residues is essential to form a disulfide bond and second, that they are not easily oxidized to disulfide if they are buried in the interior of the protein molecule.  相似文献   

6.
beta(2)-Microglobulin (beta2M), the light chain of the type I major histocompatibility complex, is a major component of dialysis-related amyloid fibrils. beta2M in the native state has a typical immunoglobulin fold with a buried intrachain disulfide bond. The conformation and stability of recombinant beta2M in which the intrachain disulfide bond was reduced were studied by CD, tryptophan fluorescence, and one-dimensional NMR. The conformation of the reduced beta2M in the absence of denaturant at pH 8.5 was similar to that of the intact protein unless the thiol groups were modified. However, reduction of the disulfide bond decreased the stability as measured by denaturation in guanidine hydrochloride. Intact beta2M formed amyloid fibrils at pH 2.5 by extension reaction using sonicated amyloid fibrils as seeds. Under the same conditions, reduced beta2M did not form typical amyloid fibrils, although it inhibited fibril extension competitively, suggesting that the conformation defined by the disulfide bond is important for amyloid fibril formation of beta2M.  相似文献   

7.
M Ikeguchi  S Sugai  M Fujino  T Sugawara  K Kuwajima 《Biochemistry》1992,31(50):12695-12700
The unfolding and refolding of a derivative of alpha-lactalbumin, in which the disulfide bond between Cys6 and Cys120 is selectively reduced and S-carboxymethylated, are investigated by equilibrium and kinetic circular dichroism measurements. The native conformation of this derivative is known to be essentially identical to that of intact alpha-lactalbumin. The equilibrium unfolding of the derivative involves a stable intermediate, which is also similar to the molten globule state of the disulfide intact protein. The results of stopped-flow circular dichroism experiments show that the same intermediate is formed rapidly as a transient intermediate in kinetic refolding. The conformational stabilities for the native and intermediate states have been estimated and compared with the stabilities for the corresponding states of intact alpha-lactalbumin. The stabilization of the native state by the disulfide has been interpreted in terms of a decrease in chain entropy in the unfolded state and elimination of the strain imposed on the disulfide bond in the native state. The molten globule state is also stabilized by the disulfide bond, although the degree of stabilization of the molten globule state is smaller than of the native state. The results suggest that, in the molten globule state, some ordered structures are present within the loop moiety formed by the 6-120 disulfide.  相似文献   

8.
Y Kawata  K Hamaguchi 《Biochemistry》1991,30(18):4367-4373
The CL fragment of a type-kappa immunoglobulin light chain in which the C-terminal cysteine residue was modified with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (CL-AEDANS fragment) was prepared. This fragment has only one tryptophan residue at position 148. The compactness of the fragment whose intrachain disulfide bond was reduced in order for the tryptophan residue to fluoresce (reduced CL-AEDANS fragment) was studied in the early stages of refolding from 4 M guanidine hydrochloride by fluorescence energy transfer from Trp 148 to the AEDANS group. The AEDANS group attached to the SH group of a cysteine scarcely fluoresced when excited at 295 nm. For the reduced CL-AEDANS fragment, the fluorescence emission band of the Trp residue overlapped with the absorption band of the AEDANS group, and the fluorescence energy transfer was observed between Trp 148 and the AEDANS group in the absence of guanidine hydrochloride. In 4 M guanidine hydrochloride, the distance between the donor and the acceptor was larger, and the efficiency of the energy transfer became lower. The distance between Trp 148 and the AEDANS group for the intact protein estimated by using the energy-transfer data was in good agreement with that obtained by X-ray crystallographic analysis. By the use of fluorescence energy transfer, tryptophyl fluorescence, and circular dichroism at 218 nm, the kinetics of unfolding and refolding of the reduced fragment were studied. These three methods gave the same unfolding kinetic pattern. However, the refolding kinetics measured by fluorescence energy transfer were different from those measured by tryptophyl fluorescence and circular dichroism, the latter two giving the same kinetic pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Beta2-microglobulin (beta2-m), a major component of dialysis-related amyloid fibrils, has an intrachain disulfide bond buried inside the native structure. We examined the conformation of beta2-m amyloid fibrils by analyzing the reactivity of the disulfide bond to a reducing reagent, dithiothreitol. Although the disulfide bond in the native structure was highly protected from reduction, the disulfide bonds in the amyloid fibrils prepared at pH 2.5 were progressively reduced at pH 8.5 by 50 mm dithiothreitol. Because beta2-m amyloid fibrils prepared under acidic conditions have been known to depolymerize at a neutral pH, we examined the relation between depolymerization and reduction of the disulfide bond. The results indicate that the disulfide bonds in the amyloid fibrils were protected from reduction, and the reduction occurred during depolymerization. On the other hand, the disulfide bonds of immature filaments, the thin and flexible filaments prepared under conditions of high salt at pH 2.5, were reduced at pH 8.5 more readily than those of amyloid fibrils, suggesting that the disulfide bonds are exposed to the solvent. Taken together, the disulfide bond once exposed to the solvent upon acid denaturation may be progressively buried in the interior of the amyloid fibrils during its formation.  相似文献   

10.
Y Kawata  K Hamaguchi 《Biopolymers》1990,30(3-4):389-394
Hydrogen-exchange rates of the indole NH proton of a tryptophan residue, buried fully in the interior of each of the constant (CL) and variable (VL) fragments of a type-kappa-immunoglobulin light chain, were studied at various pH values and at 25 degrees C under 1H-nuclear magnetic resonance. The activation energies for the exchange reactions were determined also and compared with those for the unfolding reactions of these fragments induced by guanidine hydrochloride. The pH profiles of the exchange rates of the CL(kappa) and VL(kappa) fragments were very similar to that for a CL (lambda) fragment reported previously. It was found that the CL (kappa) and VL (kappa) fragments as well as the CL (lambda) fragment undergo a global unfolding transition with a conformation very similar to that of the fully unfolded state induced by guanidine hydrochloride even under physiological conditions.  相似文献   

11.
Partially reduced proteins and other chemically modified derivatives are very useful model systems to understand the protein folding in vivo. Upon reduction, proteins attain different conformations with varying degrees of compactness. The reduction of papain in the presence of 8 M urea leads to the partial reduction of one disulfide bond. This derivative (single disulfide reduced carboxymethylated 1RCM papain (3RCM papain)) was characterized by spectroscopic methods and the effect of this reduction on the unfolding of the protein was investigated. Under this partial reduction, papain exhibits more than half of the tertiary and most of the secondary structures relative to the non-reduced molecule (free cysteine reduced and carboxymethylated papain (1RCM papain)). Hydrophobic regions are exposed to the solvent as observed through 8-anilino-1-naphthalene sulfonic acid binding which was absent in the fully intact and unfolded protein, at neutral pH. Hydrodynamic studies indicated that 3RCM papain, under neutral conditions, possess expanded conformation as compared to the native protein. Tryptophan fluorescence quenching studies suggested the exposure of aromatic residues to solvent. Guanidine hydrochloride induced unfolding of this derivative, at neutral pH, showed a non-cooperative transition contrary to the cooperativity seen with intact protein. Thermal unfolding indicates that 3RCM papain is less stable compared to the intact protein. These findings suggest that partial reduction of papain has a significant effect on the unfolding behavior of papain.  相似文献   

12.
A disulfide bond between cysteine 66 and cysteine 160 of equine beta-lactoglobulin was removed by substituting cysteine residues with alanine. This disulfide bond is conserved across the lipocalin family. The conformation and stability of the disulfide-deleted mutant protein was investigated by circular dichroism. The mutant protein assumes a native-like structure under physiological conditions and assumes a helix-rich molten globule structure at acid pH or at moderate concentrations of urea as the wild-type protein does. The urea-induced unfolding experiment shows that the stability of the native conformation was reduced but that of the molten globule intermediate is not significantly changed at pH 4 by removal of the disulfide bond. On the other hand, the molten globule at acid pH was destabilized by removal of the disulfide bond. This difference in the stabilizing effect of the disulfide bond was interpreted by the effect of the disulfide in keeping the molecule compact against the electrostatic repulsion at acid pH. In contrast to the wild-type protein, the circular dichroism spectrum in the molten globule state at acid pH depends on anion concentration, suggesting that the expansion of the molecule through electrostatic repulsion induces alpha-helices as observed in the cold denatured state of the wild-type protein.  相似文献   

13.
The constant fragment of the immunoglobulin light chain whose intrachain disulfide bond is reduced (reduced CL fragment) assumes a conformation very similar to the intact CL fragment (Goto & Hamaguchi, 1979). The kinetics of reversible unfolding and refolding of the reduced CL fragment by guanidine hydrochloride at pH 7.5 and 25 °C were studied and were compared with those of the intact CL fragment described in the accompanying paper (Goto & Hamaguchi, 1982). Tryptophyl fluorescence, far-ultraviolet circular dichroism, and reactivity of the SH groups toward 5,5′-dithiobis-(2-nitrobenzoic acid) were used to follow the kinetics. The results obtained were thoroughly explained on the basis of the three-species mechanism, U1
U2
N, where U1 and U2 are slow-folding and fast-folding species, respectively, of unfolded protein and N is native protein. The rate constants of interconversion between U1 and U2 and the rate constant for the process from N to U2 were very similar to the respective values for the intact CL fragment. Only the rate constant for the process from U2 to N was greatly different between the intact and reduced CL fragments; the rate constant for the reduced CL fragment was about 100 times smaller than that for the intact CL fragment. These results indicated that the slow isomerization of the unfolded molecule is independent of the presence of the disulfide bond and that the kinetic role of the intrachain disulfide bond is to accelerate the folding process. This kinetic role in the folding of the CL fragment was explainable only in terms of the decreased entropy in the unfolded state of the intact CL fragment due to the presence of the disulfide bond.  相似文献   

14.
Helicobacter pylori cysteine-rich proteins (Hcps) are disulfide-containing repeat proteins. The repeating unit is a 36-residue, disulfide-bridged, helix-loop-helix motif. We use the protein HcpB, which has four repeats and four disulfide bridges arrayed in tandem, as a model to determine the thermodynamic stability of a disulfide-rich repeat protein and to study the formation and the contribution to stability of the disulfide bonds. When the disulfide bonds are intact, the chemical unfolding of HcpB at pH 5 is cooperative and can be described by a two-state reaction. Thermal unfolding is reversible between pH 2 and 5 and irreversible at higher pH 5. Differential scanning calorimetry shows noncooperative structural changes preceding the main thermal unfolding transition. Unfolding of the oxidized protein is not an all-or-none two-state process, and the disulfide bonds prevent complete unfolding of the polypeptide chain. The reduced protein is significantly less stable and does not unfold in a cooperative way. During oxidative refolding of the fully reduced protein, all the possible disulfide intermediates with a correct disulfide bond are formed. Formation of "wrong" (non-native) disulfide bonds could not be demonstrated, indicating that the reduced protein already has some partial repeating structure. There is a major folding intermediate with disulfides in the second, third, and fourth repeat and reduced cysteines in the first repeat. Disulfide formation in the first repeat limits the overall rate of oxidative refolding and contributes about half of the thermodynamic stability to native HcpB, estimated as 27 kJ mol(-1) at 25 degrees C and pH 7. The high contribution to stability of the first repeat may be explained by the repeat acting as a cap to protect the hydrophobic interior of the molecule.  相似文献   

15.
Recombinant antibody fragments, most notably Fab and scFv, have become important tools in research, diagnostics and therapy. Since different recombinant antibody formats exist, it is crucial to understand the difference in their respective biophysical properties. We assessed the potential stability benefits of changing the scFv into the Fab format, the influence of the variable domains on the stability of the Fab fragment, and the influence of the interchain disulfide bond in the Fab fragment. To analyze domain interactions, the Fab fragment was broken down into its individual domains, several two-domain assemblies and one three-domain assembly. The equilibrium denaturation properties of these constructs were then compared to those of the Fab fragment. It was found that mutual stabilization occurred across the VH/VL and the CH1/CL interface, whereas the direct interaction between the V) and the CL domain had no influence on the stability of either domain. This observation can be explained by the different interfaces used for interaction. In contrast, the whole CH1CL and VHVL unit showed significant mutual stabilization, indicating a high degree of cooperation between the VH/VL and CH1/CL interface. The interchain disulfide bond in the Fab fragment plays an essential role in this stabilization. In addition to the effects of domain association on the thermodynamic (equilibrium) stability, Fab fragments differ from scFv fragments of similar equilibrium stability by having a very slow unfolding rate. This kinetic stabilization may increase significantly the resistance of Fab fragments against short time exposure to adverse conditions.  相似文献   

16.
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. The antibody structure is complex, consisting of beta-sheet rich domains stabilized by multiple disulfide bridges. The dimerization of the C(H)3 domain in the constant region of the heavy chain plays a pivotal role in the assembly of an antibody. This domain contains a single buried, highly conserved disulfide bond. This disulfide bond was not required for dimerization, since a recombinant human C(H)3 domain, even in the reduced state, existed as a dimer. Spectroscopic analyses showed that the secondary and tertiary structures of reduced and oxidized C(H)3 dimer were similar, but differences were observed. The reduced C(H)3 dimer was less stable than the oxidized form to denaturation by guanidinium chloride (GdmCl), pH, or heat. Equilibrium sedimentation revealed that the reduced dimer dissociated at lower GdmCl concentration than the oxidized form. This implies that the disulfide bond shifts the monomer-dimer equilibrium. Interestingly, the dimer-monomer dissociation transition occurred at lower GdmCl concentration than the unfolding transition. Thus, disulfide bond formation in the human C(H)3 domain is important for stability and dimerization. Here we show the importance of the role played by the disulfide bond and how it affects the stability and monomer-dimer equilibrium of the human C(H)3 domain. Hence, these results may have implications for the stability of the intact antibody.  相似文献   

17.
Bovine beta-lactoglobulin A assumes a dimeric native conformation at neutral pH, while the conformation at pH 2 is monomeric but still native. Beta-lactoglobulin A has a free thiol at Cys121, which is buried between the beta-barrel and the C-terminal major alpha-helix. This thiol group was specifically reacted with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the presence of 1.0 M Gdn-HCI at pH 7.5, producing a modified beta-lactoglobulin (TNB-bIg) containing a mixed disulfide bond with 5-thio-2-nitrobenzoic acid (TNB). The conformation and stability of TNB-bIg were studied by circular dichroism (CD), tryptophan fluorescence, analytical ultracentrifugation, and one-dimensional 1H-NMR. The CD spectra of TNB-bIg indicated disordering of the native secondary structure at pH 7.5, whereas a slight increase in the alpha-helical content was observed at pH 2.0. The tryptophan fluorescence of TNB-bIg was significantly quenched compared with that of the intact protein, probably by the energy transfer to TNB. Sedimentation equilibrium analysis indicated that, at neutral pH, TNB-bIg is monomeric while the intact protein is dimeric. In contrast, at pH 2.0, both the intact beta-lactoglobulin and TNB-bIg were monomeric. The unfolding transition of TNB-bIg induced by Gdn-HCl was cooperative in both pH regions, although the degree of cooperativity was less than that of the intact protein. The 1H-NMR spectrum for TNB-bIg at pH 3.0 was native-like, whereas the spectrum at pH 7.5 was similar to that of the unfolded proteins. These results suggest that modification of the buried thiol group destabilizes the rigid hydrophobic core and the dimer interface, producing a monomeric state that is native-like at pH 2.0 but is molten globule-like at pH 7.5. Upon reducing the mixed disulfide of TNB-bIg with dithiothreitol, the intact beta-lactoglobulin was regenerated. TNB-bIg will become a useful model to analyze the conformation and stability of the intermediate of protein folding.  相似文献   

18.
Xu G  Narayan M  Welker E  Scheraga HA 《Biochemistry》2004,43(11):3246-3254
A fast-forming intermediate in the reductive unfolding of frog onconase (ONC), des [30-75], analogous to the des [40-95] intermediate found in the reductive unfolding of its structural homologue, bovine pancreatic ribonuclease A (RNase A), has been isolated and characterized. The midpoints of the thermal transition and chemical denaturing curves (representing global unfolding) indicate that the conformation of des [30-75] is considerably less stable than that of the parent molecule, suggesting that the (30-75) disulfide bond plays a significant role in the conformational stability of ONC. While des [30-75] is formed very quickly by a partial reduction of the parent molecule in a local unfolding step, it is not as easily susceptible to further reduction, indicating that its three disulfides are much more buried compared to the (30-75) disulfide bond in the parent protein. The nature of des [30-75] is similar to that of des [40-95] RNase A, in that des [30-75] ONC is also a disulfide-secure species. In addition, based on the resistance to mild reducing conditions, structured des species appear to form in ONC from unstructured three-disulfide-containing ensembles. This step is key in the oxidative folding of RNaseA, and is much faster in ONC than the formation of the structured des [40-95] species in RNase A.  相似文献   

19.
The disulfide bonds of the Na(+)/glucose cotransporter (SGLT1) are believed to participate in the binding of the transport inhibitor phlorizin. Here, we investigated the role of the [560-608] disulfide bond on the phlorizin-binding function of the C-terminal loop 13 of SGLT1 using 3-iodoacetamidophlorizin (3-IAP) as a probe. The reactivity of 3-IAP to the fully reduced loop 13 was competitively inhibited by phlorizin, as evident from the MALDI mass spectra. It indicates that the disulfide bond is not mandatory for phlorizin binding. CD and equilibrium unfolding studies showed that the secondary structure and conformation stability of loop 13 were not affected by removing the disulfide bond. Furthermore, we generated a series of loop 13 mutants to assess the contribution of the disulfide bond to phlorizin binding. A positive correlation between the stability and phlorizin affinity of the mutant proteins was observed, implying that the protein stability, rather than the disulfide bond, is relevant to the phlorizin-binding function of loop 13.  相似文献   

20.
Proteins of many types experience tensile forces in their normal function, and vascular cell adhesion molecule-1 (VCAM-1) is typical in this. VCAM has seven Ig domains, and each has a disulfide bond (-S-S-) buried in its core that covalently stabilizes about half of each domain against unfolding. VCAM is extended here by single molecule atomic force microscopy in the presence or absence of reducing agents. In the absence of reducing agent, a sawtooth pattern of forced unfolding reveals an average period and total length consistent with disulfide locations in VCAM. With increasing reducing agent, accessible disulfides are specifically reduced (to SH); the average period for unfolding increases up to saturation together with additional metrics of unfolding. Steered molecular dynamics simulations of unfolding indeed show that the core disulfide bond is solvent-exposed in the very earliest stages of protein extension. Michaelis-Menten kinetics emerge with reduction catalyzed by force (tau(reduction) approximately 10(-4) s). The results establish single molecule reduction, one bond at a time, and show that mechanical forces can play a key role in modulating the redox state of cell adhesion proteins that are invariably stressed in cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号