首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P53 is one of the most important tumor suppressor proteins in human cancers. Mutations in the TP53 gene are common features of malignant tumors and normally correlate to a more aggressive disease. In breast cancer, these gene alterations are present in approximately 20% of cases and are characteristically of missense type. In the present work we describe TP53 mutations in breast cancer biopsies and investigate whether wild and mutant p53 participate in protein aggregates formation in these breast cancer cases. We analyzed 88 biopsies from patients residing in the metropolitan area of Rio de Janeiro, and performed TP53 mutation screening using direct sequencing of exons 5-10. Seventeen mutations were detected, 12 of them were of missense type, 2 nonsenses, 2 deletions and 1 insertion. The presence of TP53 mutation was highly statistically associated to tumor aggressiveness of IDC cases, indicated here by Elston Grade III (p<0.0001). Paraffin embedded breast cancer tissues were analyzed for the presence of p53 aggregates through immunofluorescence co-localization assay, using anti-aggregate primary antibody A11, and anti-p53. Our results show that mutant p53 co-localizes with amyloid-like protein aggregates, depending on mutation type, suggesting that mutant p53 may form aggregates in breast cancer cells, in vivo.  相似文献   

2.
The standard classification used to define the various cancer genes confines tumor protein p53 (TP53) to the role of a tumor suppressor gene. However, it is now an indisputable fact that many p53 mutants act as oncogenic proteins. This statement is based on multiple arguments including the mutation signature of the TP53 gene in human cancer, the various gains-of-function (GOFs) of the different p53 mutants and the heterogeneous phenotypes developed by knock-in mouse strains modeling several human TP53 mutations. In this review, we will shatter the classical and traditional image of tumor protein p53 (TP53) as a tumor suppressor gene by emphasizing its multiple oncogenic properties that make it a potential therapeutic target that should not be underestimated. Analysis of the data generated by the various cancer genome projects highlights the high frequency of TP53 mutations and reveals that several p53 hotspot mutants are the most common oncoprotein variants expressed in several types of tumors. The use of Muller''s classical definition of mutations based on quantitative and qualitative consequences on the protein product, such as ‘amorph'', ‘hypomorph'', ‘hypermorph'' ‘neomorph'' or ‘antimorph'', allows a more meaningful assessment of the consequences of cancer gene modifications, their potential clinical significance, and clearly demonstrates that the TP53 gene is an atypical cancer gene.  相似文献   

3.
The purpose of this review is to summarize the evidence that can be used to reconstruct the etiology of human cancers from mutations found in tumors. Mutational spectra of the tumor suppressor gene p53 (TP53) are tumor specific. In several cases, these mutational spectra can be linked to exogenous carcinogens, most notably for sunlight-associated skin cancers, tobacco-associated lung cancers, and aristolochic acid-related urothelial tumors. In the TP53 gene, methylated CpG dinucleotides are sequences selectively targeted by endogenous and exogenous mutagenic processes. Recent high-throughput sequencing efforts analyzing a large number of genes in cancer genomes have so far, for the most part, produced mutational spectra similar to those in TP53 but have unveiled a previously unrecognized common G to C transversion mutation signature at GpA dinucleotides in breast cancers and several other cancers. Unraveling the origin of these G to C mutations will be of importance for understanding cancer etiology.  相似文献   

4.
Summary The cause of Li-Fraumeni syndrome, a rare group syndrome of familial cancers, has recently been identified. Patients with this inherited condition are highly susceptible to specific neoplasms, including early-onset breast cancers. The available evidence links Li-Fraumeni syndrome to inherited mutations of the tumor suppressor gene p53. Moreover, somatically acquired p53 mutations and gene deletions are common feature in breast cancer of sporadic origin. These findings suggest that germline p53 mutations are important in familial and, possibly sporadic, breast tumors. We have therefore screened lymphocyte DNA from 19 unrelated bilateral cancer patients for germline p53 mutations in exons 5, 6, 7 and 8. We have however detected no germline mutations by means of the single-strand confirmation polymorphism technique in any of the lymphocyte DNAs examined and conclude that p53 mutations are not generally involved in bilateral breast cancer.  相似文献   

5.
Gliomas of astrocytic origin are the most common primary brain tumors, accounting for over 40 to 50% of all central nervous system tumors. The TP53 tumor suppressor gene is the most frequently mutated gene found in human malignancies. A mutation of this gene can lead to an increased half-life of the resulting protein and loss of biological function. High levels of p53 have been detected in the serum of colon cancer patients, although p53 protein has not been detected in the serum of brain tumor patients. Besides circulating p53, several studies have detected antibodies against p53 in patients with lung and breast cancer, as well as those with other types of cancer. We studied p53 protein and anti-p53 antibodies in the plasma of Brazilian brain tumor patients. Plasma samples were drawn from 24 untreated brain tumor patients and from 15 healthy donors without clinical signs of cancer. Western blotting techniques were used to detect p53 protein and anti-p53 antibodies. We found anti-p53 antibodies in 5/24 brain tumor patients. Age appears to affect the immune response, as four of six tumor patients under 16 years old had detectable anti-p53 antibodies, while these were found in only 1 of 18 adults (over 16 years old). We found no p53 protein in any of the serum samples from the brain tumors. Possibly the presence of this protein is affected by tumor type or by the organs that are sampled.  相似文献   

6.
突变体p53研究进展   总被引:4,自引:0,他引:4  
李大虎  张令强  贺福初 《遗传》2008,30(6):697-703
抑癌基因突变是癌症发生过程中一个极为关键的事件。p53作为体内最重要的抑癌基因之一, 在人类癌症中发生突变的频率高达50%。同时, p53突变也是人类遗传病Li-Fraumeni综合征的主要病因。p53最常见的突变形式是错义突变, 所形成的突变体p53不但失去了野生型p53的抑癌功能, 而且还获得了一系列类似于癌基因的功能, 促进了肿瘤的进程。文章拟对突变体p53的结构功能改变, 获得癌基因活性的分子机制, 以及近年来对封闭突变体p53活性所进行的探索等研究方向所取得的进展做一综述。  相似文献   

7.
8.
p53 inducible cyclin dependent kinase inhibitor, p21/WAF1/CIP1(p21), played a pivotal role for G1 arrest when cells received genotoxic stimuli. p21 could be a putative tumor suppressor gene, since its dysfunction may lead to accumulation of genomic alteration. We investigated the p21 and p53 status using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and immunohistochemical analyses, in eight patients who had synchronous or metachronous urothelial tumors. Loss of heterozygosity (LOH) of p21 gene was detected in one coincidental tumor in one case. p21 positive cells were detected by immuno-histochemical staining in all tumors in one case, and in one coincidental tumor in two cases. Among p21 positive cells in these three cases, no p53 mutations were detected, whereas no p21 positive cells were detected in other cases with a p53 mutation. These findings suggested that in transitional cell carcinoma (TCC) p21 gene mutation is infrequent like the p53 gene mutation, but that LOH might be important in the inactivation of p21.  相似文献   

9.
p53 and disease: when the guardian angel fails   总被引:4,自引:0,他引:4  
The p53 tumor suppressor gene (TP53) is mutated more often in human cancers than any other gene yet reported. Of importance, it is mutated frequently in the common human malignancies of the breast and colorectum and also, but less frequently, in other significant human cancers such as glioblastomas. There is also one inherited cancer predisposing syndrome called Li-Fraumeni that is caused by TP53 mutations. In this review, we discuss the significance of p53 mutations in some of the above tumors with a view to outlining how p53 contributes to malignant progression. We also discuss the usefulness of TP53 status as a prognostic marker and its role as a predictor of response to therapy. Finally, we outline some evidence that abnormalities in p53 function contribute to the etiology of other non-neoplastic diseases.  相似文献   

10.
Thirty percent of human breast cancers have amplification of ERBB2, often in conjunction with mutations in p53. The most common p53 mutation in human breast cancers is an Arg-to-His mutation at codon 175, an allele that functions in a dominant oncogenic manner in tumorigenesis assays and is thus distinct from loss of p53. Transgenic mice expressing mouse mammary tumor virus-driven neu transgene (MMTV-neu) develop clonal mammary tumors with a latency of 234 days, suggesting that other events are necessary for tumor development. We have examined the role of mutations in p53 in tumor development in these mice. We have found that 37% of tumors arising in these mice have a missense mutations in p53. We have directly tested for cooperativity between neu and mutant p53 in mammary tumorigenesis by creating bitransgenic mice carrying MMTV-neu and 172Arg-to-His p53 mutant (p53-172H). In these bitransgenic mice, tumor latency is shortened to 154 days, indicating strong cooperativity. None of the nontransgenic mice or the p53-172H transgenic mice developed tumors within this time period. Tumors arising in the p53-172H/neu bitransgenic mice were anaplastic and aneuploid and exhibited increased apoptosis, in distinction to tumors arising in p53-null mice, in which apoptosis is diminished. Further experiments address potential mechanisms of cooperativity between the two transgenes. In these bitransgenic mice, we have recapitulated two common genetic lesions that occur in human breast cancer and have shown that p53 mutation is an important cooperating event in neu-mediated oncogenesis.  相似文献   

11.
Lung cancer development involves multiple genetic abnormalities leading to malignant transformation of the bronchial epithelial cells, followed by invasion and metastasis. One of the most common changes is mutation of the p53 tumor suppressor gene. The frequency of p53 alterations in lung cancer is highest in small cell and squamous cell carcinomas. A genetic “signature” of the type of p53 mutations has been associated with carcinogens in cigarette smoke. The majority of clinical studies suggest that lung cancers with p53 alterations carry a worse prognosis, and may be relatively more resistant to chemotherapy and radiation. An understanding of the role of p53 in human lung cancer may lead to more rational targeted approaches for treating this disease. P53 gene replacement is currently under clinical investigation but clearly more effective means of gene deliver to the tumor cells are required. Novel approaches to lung cancer therapy are needed to improve the observed poor patient survival despite current therapies.  相似文献   

12.
Mutations of the p53 tumor suppressor gene are among the most common genetic alterations found in many different human malignancies, including those of the colon, lung, and breast. Alterations in wild-type p53 lead to loss of the suppressor function and thus contribute to tumorigenesis. The potential role of p53 mutations in a sampling of B-cell lymphomas, the majority of which were associated with Epstein-Barr virus (EBV), was investigated. Twenty-six biopsy specimens from immunocompromised patients, including allograft recipients and patients with AIDS, Wiscott-Aldrich syndrome, and human T-cell leukemia virus type 1 infection, in comparison with three Burkitt lymphomas and four Burkitt lymphoma cell lines were analyzed. Mutation in p53 was detected in all four Burkitt lymphoma cell lines as well as the three Burkitt lymphoma biopsy specimens. In patients with AIDS, 5 of 10 lymphomas were EBV positive, and 1 had a mutation in p53. Mutation in p53 was not detected in 14 EBV-positive lymphomas which arose in transplant recipients. These data indicate that with the exception of Burkitt lymphomas, p53 mutations are not involved in the majority EBV-positive B-cell lymphomas which develop in immunocompromised patients.  相似文献   

13.
14.
The p53 gene product is part of a pathway regulating growth arrest at the G1 checkpoint of the cell cycle. Mutation of other components of this pathway, including the products of the ataxia telangiectasia (AT), GADD45, mdm2, and p21WAF1/CIP1 genes may have effects comparable to mutations in the p53 gene. The GADD45 gene is induced by ionizing radiation and several DNA-damaging xenobiotics. Induction requires the binding of wild-type p53 to an evoulutionarily highly conserved putative intronic p53 binding site in intron 3 of GADD45. We recently analyzed the entire coding region of the p53 gene in primary breast cancers of Midwestern white women and found 21 mutations among 53 tumors (39,6%). We now have shown by direct sequencing that there are no mutations in the intronic p53 binding site of the GADD45 gene in any of the 53 primary breast cancers and no mutations in the entire coding region of the GADD45 gene in a subset of 26 consecutive tumors (12 with p53 mutation and 14 without p53 mutation). The only sequence variation detected was a common polymorphism in intron 3. The absence of mutations in the GADD45 gene, including the putative p53-binding intronic site, suggests that this gene is not a frequent target of mutations in breast cancer. Although mutations of the p53 gene have been studied in a wide spectrum of human cancers, GADD45 has not been examined in any tumor or cell line to the best of our knowledge. Our results raise the possibility that mutation of the GADD45 gene alone is not functionally equivalent to loss of wild-type p53 activity. Received: 14 September 1995  相似文献   

15.
The mutational status of the tumor suppressor gene TP53 is often examined by immunohistochemistry. We compared the incidence of TP53 mutations in 12 permanent squamous cell carcinoma lines of the head and neck with the immunohistochemical staining obtained with two different antibodies. The mutational status of the TP53 gene was assessed by sequencing the complete coding frame of the TP53 mRNA. All 12 tumor cell lines had TP53 mutations. Six of them showed missense mutations and five had premature stop codons caused either by splicing mutations or nonsense mutations or by exon skipping. One tumor cell line was heterozygous, with a truncating splicing mutation and an additional missense mutation located on different alleles. In one case, an in-frame insertion of 23 extra codons was found. All missense mutations were positive in immunhistochemistry and Western blotting. The truncated p53 was not immunohistochemically detected in three cases with the DO-7 antibody and in five cases with the G59-12 antibody, giving false-negative results in 25% or 40%, respectively, of all tumor cell lines examined. We conclude that splicing mutations are common in squamous cell carcinoma lines and that the incidence of p53 inactiviation by erroneous splicing is higher than yet reported. Sequencing of only the exons of TP53 may miss intronic mutations leading to missplicing and may therefore systematically underestimate the TP53 mutation frequency.  相似文献   

16.
Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome.   总被引:4,自引:0,他引:4       下载免费PDF全文
Germ-line mutations of the tumor-suppressor gene p53 have been observed in some families with the Li-Fraumeni syndrome (LFS), a familial cancer syndrome in which affected relatives develop a diverse set of early-onset malignancies including breast carcinoma, sarcomas, and brain tumors. The analysis of the p53 gene in LFS families has been limited, in most studies to date, to the region between exon 5 and exon 9. In order to determine the frequency and distribution of germ-line p53 mutations in LFS, we sequenced the 10 coding exons of the p53 gene in lymphocytes and fibroblast cell lines derived from 15 families with the syndrome. Germ-line mutations were observed in eight families. Six mutations were missense mutations located between exons 5 and 8. One mutation was a nonsense mutation in exon 6, and one mutation was a splicing mutation in intron 4, generating aberrant shorter p53 RNA(s). In three families, a mutation of the p53 gene was observed in the fibroblast cell line derived from the proband. However, the mutation was not found in affected relatives in two families and in the blood from the one individual, indicating that the mutation probably occurred during cell culture in vitro. In four families, no mutation was observed. This study indicates that germ-line p53 mutations in LFS are mostly located between exons 5 and 8 and that approximately 50% of patients with LFS have no germ-line mutations in the coding region of the p53 gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Human tumor cells have properties in vitro or in surrogate hosts that are distinct from those of normal cells, such as immortality, anchorage independence, and tumor formation in nude mice. However, different cells from individual tumors may exhibit some, but not all of these features. In previous years, human tumor cell lines derived from different tumor and tissue types have been studied to determine those molecular changes that are associated with the in vitro properties listed above and with tumorigenicity in nude mice. In the present study, seven cell lines derived from human tumors were characterized for p53 and ras mutations that may occur in SCC tumor phenotypes and for tumor formation in nude mice. This investigation was designed to examine whether co-occurrence of mutated ras and p53 lead to a malignant stage in the progression process. None of the seven cell lines contained mutations in the recognized "hot spots" of the p53 tumor suppressor gene, but four had a nonsense/splice mutation in codon 126 and a mutation in codon 12 of the H-ras gene. The remaining three cell lines had p53 mutations in intron 5, in codon 193, and a missense mutation in codon 126, respectively. Four of seven cell lines were nontumorigenic; two of these cell lines contained a nonsense p53-126 mutation and mutated ras; one had a missense mutation at codon 126 but no mutated ras; the the fourth had only a p53 mutation at codon 193. Two of the nontumorigenic cell lines were converted to tumorigenicity after treatment with methyl methanesulfonate or N-methyl-N-nitro-N-nitrosoguanidine with no apparent additional mutations in either gene. Our analysis revealed that there was a high frequency of genetic diversity and mutations in both p53 and H-ras. There was also a lack of a causal relationship in the presence of mutations in p53 and the cells ability to exhibit a malignant potential in nude mice.  相似文献   

18.
Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号