首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Honeybee foraging in differentially structured landscapes   总被引:1,自引:0,他引:1  
Honeybees communicate the distance and location of resource patches by bee dances, but this spatial information has rarely been used to study their foraging ecology. We analysed, for the first time to the best of the authors' knowledge, foraging distances and dance activities of honeybees in relation to landscape structure, season and colony using a replicated experimental approach on a landscape scale. We compared three structurally simple landscapes characterized by a high proportion of arable land and large patches, with three complex landscapes with a high proportion of semi-natural perennial habitats and low mean patch size. Four observation hives were placed in the centre of the landscapes and switched at regular intervals between the six landscapes from the beginning of May to the end of July. A total of 1137 bee dances were observed and decoded. Overall mean foraging distance was 1526.1 +/- 37.2 m, the median 1181.5 m and range 62.1-10037.1 m. Mean foraging distances of all bees and foraging distances of nectar-collecting bees did not significantly differ between simple and complex landscapes, but varied between month and colonies. Foraging distances of pollen-collecting bees were significantly larger in simple (1743 +/- 95.6 m) than in complex landscapes (1543.4 +/- 71 m) and highest in June when resources were scarce. Dancing activity, i.e. the number of observed bee dances per unit time, was significantly higher in complex than in simple landscapes, presumably because of larger spatial and temporal variability of resource patches in complex landscapes. The results facilitate an understanding of how human landscape modification may change the evolutionary significance of bee dances and ecological interactions, such as pollination and competition between honeybees and other bee species.  相似文献   

2.
Allometric relationships among morphological traits underlie important patterns in ecology. These relationships are often phylogenetically shared; thus quantifying allometric relationships may allow for estimating difficult-to-measure traits across species. One such trait, proboscis length in bees, is assumed to be important in structuring bee communities and plant-pollinator networks. However, it is difficult to measure and thus rarely included in ecological analyses. We measured intertegular distance (as a measure of body size) and proboscis length (glossa and prementum, both individually and combined) of 786 individual bees of 100 species across 5 of the 7 extant bee families (Hymenoptera: Apoidea: Anthophila). Using linear models and model selection, we determined which parameters provided the best estimate of proboscis length. We then used coefficients to estimate the relationship between intertegular distance and proboscis length, while also considering family. Using allometric equations with an estimation for a scaling coefficient between intertegular distance and proboscis length and coefficients for each family, we explain 91% of the variance in species-level means for bee proboscis length among bee species. However, within species, individual-level intertegular distance was a poor predictor of individual proboscis length. To make our findings easy to use, we created an R package that allows estimation of proboscis length for individual bee species by inputting only family and intertegular distance. The R package also calculates foraging distance and body mass based on previously published equations. Thus by considering both taxonomy and intertegular distance we enable accurate estimation of an ecologically and evolutionarily important trait.  相似文献   

3.
1. Understanding the roles of habitat fragmentation and resource availability in shaping animal movement are integral for promoting species persistence and conservation. For insects such as bumble bees, their movement patterns affect the survival and reproductive potential of their colonies, as well as the pollen flow of plant species. However, the understanding of their mobility or the impact of putative barriers in natural environments is limited due to the technical difficulties of studying wild populations. 2. Genetic mark–recapture was used to estimate the foraging distance, resource use, and site connectivity of two bumble bee species in a montane meadow complex composed of open meadows within a matrix of forest. 3. There was no evidence that forests or changes in landcover function as barriers to the fine-scale movement for either species. Substantially greater colony-specific foraging distances were found for Bombus vosnesenskii (maximum: 1867 m) compared to Bombus bifarius (maximum: 362 m). Despite this difference in absolute range, both species were detected across putative forest barriers at frequencies expected by uninhibited movement. Siblings separated by greater distances were more likely to be foraging on different floral species, potentially suggesting a resource-based motivation for movement. 4. These results suggest that bumble bee foraging patterns are influenced by species-specific differences in movement capacity, with little influence of matrix composition between resource patches. They also support the perspective that habitat conservation for bumble bees should prioritise providing abundant and diverse patches of resources within species-specific movement radii with less emphasis on matrix composition.  相似文献   

4.
We compared the results of two biologging techniques used to study the foraging behaviour of a colony of small inshore predators, little penguins (Eudyptula minor). The first technique involved the use of satellite transmitters and diving loggers deployed on separate individuals, which has been the conventional method of tracking the movements and behaviour of this species for > 10 years. The second technique combined a diving logger and a global positioning system (GPS) logger deployed on the same individual, which is similar to the biologging methods presently being developed and used for many other species. We then considered the value of each technique as a conservation tool operating at the small scale (foraging area < 5000 ha and duration < 1 day).We found that the separately deployed satellite transmitters significantly underestimated the penguins' foraging area size. However, the size of the foraging area and other foraging parameters, such as total distance travelled, were influenced by the degree of GPS location sub-sampling. Furthermore, only the combined diving and GPS loggers could confidently describe the diving behaviour of the penguins in relation to the sea floor and identify that they were using small areas of conservation interest (shipping channel) inside their foraging area.Hence, the method employed to assess habitat use at fine scales can influence conservation measures that rely upon the data collected. We suggest that researchers fast-track their adoption of high resolution multi-loggers for increased data confidence when tracking animals at a fine scale, but also consider the potential effect of sampling rate on the calculation of parameters of interest.  相似文献   

5.
Population connectivity is an important source of information for planning conservation strategy. The degree of connectivity implies using alternative conservation prioritizations based on the appropriate spatial scale for management units. In species with low population connectivity, it is important to preserve local populations in order to maintain the species throughout its range. In contrast, species with high connectivity require extensive management aiming at preserving gene flow through the entire species range. Here we examine at the continental scale the relationship between inter-population/inter-individual genetic and geographical distances to study the isolation-by-distance (IBD) pattern within the European range of nine wild bee species. We then assess the suitability of multi-local or extensive conservation to ensure their long-term survival. Results based on inter-population differences show only two out of nine species with significant IBD. European bee populations seem quite connected when their IBD is compared to IBD of other phyla. However, our results based on inter-individual distances show that eight out of nine species display significant IBD. These different results are presumably a consequence of potential limitations of the inter-population approach. Therefore, we speculate that the inter-population approach could result in inaccurate IBD estimations. This approach should therefore be replaced by the inter-individual approach in order to provide strong supported conservation guidelines. We support multi-local conservation programs based on our analysis of inter-individual distances.  相似文献   

6.
Chapman RE  Wang J  Bourke AF 《Molecular ecology》2003,12(10):2801-2808
Conservation biologists, evolutionary ecologists and agricultural biologists require an improved understanding of how pollinators utilize space and share resources. Using microsatellite markers, we conducted a genetic analysis of space use and resource sharing at several spatial scales among workers of two ecologically dissimilar bumble bee species (Bombus terrestris and B. pascuorum) foraging in an urban landscape (London, UK). At fine scales, the relatedness of workers visiting small patches of flowers did not differ significantly from zero. Therefore, colonies shared flower patches randomly with other colonies, suggesting that worker scent-marks deterring visits to unrewarding flowers have not evolved as signals benefiting nestmates. To investigate space use at intermediate scales, we developed a program based on Thomas & Hill's maximum likelihood sibship reconstruction method to estimate the number of colonies utilizing single sites. The average number of colonies (95% confidence limits) sending workers to forage at sites of approximately 1 ha in area was 96 colonies (84-118) in B. terrestris and 66 colonies (61-76) in B. pascuorum. These values are surprisingly high and suggested that workers travelled far from their colonies to visit the sites. At the landscape scale, there was little or no genetic differentiation between sites. We conclude that urban habitats support large bumble bee populations and are potentially valuable in terms of bumble bee conservation. In addition, bumble bee-mediated gene flow in plants is likely to occur over large distances and plant-bumble bee conservation requires landscape-scale action.  相似文献   

7.
To assess if pollinators’ behaviour could explain the maintenance of hybrid zones between different flower colour morphs, we analyzed flower colour variation in an Antirrhinum hybrid zone using spectrometry and a model of bee perception. Some colours generated by hybridization were not observed in any Antirrhinum species and even appeared to be rare among angiosperms. Variation in flower colours within the hybrid zone was continuous; the most similar colours were predicted not to be discriminated from one another in natural foraging situations. However, when compared at a scale corresponding to bees’ foraging range, some flower colours could be discriminated from all colours displayed by neighbouring plants. This could affect pollinator behaviour and explain lower visitation rates within the centre of the hybrid zone. Behavioural studies involving bumblebees and plant mixtures of parental and hybrid flower colours carefully characterized with appropriate visual models will be necessary to test this hypothesis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Lars Chittka  相似文献   

8.
Chemical information influences the behaviour of many animals, thus affecting species interactions. Many animals forage for resources that are heterogeneously distributed in space and time, and have evolved foraging behaviour that utilizes information related to these resources. Herbivore‐induced plant volatiles (HIPVs), emitted by plants upon herbivore attack, provide information on herbivory to various animal species, including parasitoids. Little is known about the spatial scale at which plants attract parasitoids via HIPVs under field conditions and how intraspecific variation in HIPV emission affects this spatial scale. Here, we investigated the spatial scale of parasitoid attraction to two cabbage accessions that differ in relative preference of the parasitoid Cotesia glomerata when plants were damaged by Pieris brassicae caterpillars. Parasitoids were released in a field experiment with plants at distances of up to 60 m from the release site using intervals between plants of 10 or 20 m to assess parasitism rates over time and distance. Additionally, we observed host‐location behaviour of parasitoids in detail in a semi‐field tent experiment with plant spacing up to 8 m. Plant accession strongly affected successful host location in field set‐ups with 10 or 20 m intervals between plants. In the semi‐field set‐up, plant finding success by parasitoids decreased with increasing plant spacing, differed between plant accessions, and was higher for host‐infested plants than for uninfested plants. We demonstrate that parasitoids can be attracted to herbivore‐infested plants over large distances (10 m or 20 m) in the field, and that stronger plant attractiveness via HIPVs increases this distance (up to at least 20 m). Our study indicates that variation in plant traits can affect attraction distance, movement patterns of parasitoids, and ultimately spatial patterns of plant–insect interactions. It is therefore important to consider plant‐trait variation in HIPVs when studying animal foraging behaviour and multi‐trophic interactions in a spatial context.  相似文献   

9.
Social bee colonies can allocate their foraging resources over a large spatial scale, but how they allocate foraging on a small scale near the colony is unclear and can have implications for understanding colony decision‐making and the pollination services provided. Using a mass‐foraging stingless bee, Scaptotrigona pectoralis (Dalla Torre) (Hymenoptera: Apidae: Meliponini), we show that colonies will forage near their nests and allocate their foraging labor on a very fine spatial scale at an array of food sources placed close to the colony. We counted the foragers that a colony allocated to each of nine feeders containing 1.0, 1.5, or 2.0 M sucrose solution [31, 43, and 55% sucrose (wt/wt), respectively] at distances of 10, 15, and 20 m from the nest. A significantly greater number of foragers (2.6–5.3 fold greater) visited feeders placed 10 vs. 20 m away from the colony. Foraging allocation also corresponded to food quality. At the 10‐m feeders, 4.9‐fold more foragers visited 2.0 M as compared to 1.0 M sucrose feeders. Colony forager allocation thus responded to both differences in food distance and quality even when the travel cost was negligible compared to normal colony foraging distances (10 m vs. an estimated 800–1 710 m). For a nearby floral patch, this could result in unequal floral visitation and pollination.  相似文献   

10.
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.  相似文献   

11.
Effects of habitat isolation on pollinator communities and seed set   总被引:32,自引:4,他引:28  
Destruction and fragmentation of natural habitats is the major reason for the decreasing biodiversity in the agricultural landscape. Loss of populations may negatively affect biotic interactions and ecosystem stability. Here we tested the hypothesis that habitat fragmentation affects bee populations and thereby disrupts plant-pollinator interactions. We experimentally established small ”habitat islands” of two self-incompatible, annual crucifers on eight calcareous grasslands and in the intensively managed agricultural landscape at increasing distances (up to 1000 m) from these species-rich grasslands to measure effects of isolation on both pollinator guilds and seed set, independently from patch size and density, resource availability and genetic erosion of plant populations. Each habitat island consisted of four pots each with one plant of mustard (Sinapis arvensis) and radish (Raphanus sativus). Increasing isolation of the small habitat islands resulted in both decreased abundance and species richness of flower-visiting bees (Hymenoptera: Apoidea). Mean body size of flower-visiting wild bees was larger on isolated than on nonisolated habitat islands emphasizing the positive correlation of body size and foraging distance. Abundance of flower-visiting honeybees depended on the distance from the nearest apiary. Abundance of other flower visitors such as hover flies did not change with increasing isolation. Number of seeds per fruit and per plant decreased significantly with increasing distance from the nearest grassland for both mustard and radish. Mean seed set per plant was halved at a distance of approximately 1000 m for mustard and at 250 m for radish. In accordance with expectations, seed set per plant was positively correlated with the number of flower-visiting bees. We found no evidence for resource limitation in the case of mustard and only marginal effects for radish. We conclude that habitat connectivity is essential to maintain not only abundant and diverse bee communities, but also plant-pollinator interactions in economically important crops and endangered wild plants. Received: 7 May 1999 / Accepted: 19 July 1999  相似文献   

12.
The European honey bee exploits floral resources efficiently and may therefore compete with solitary wild bees. Hence, conservationists and bee keepers are debating about the consequences of beekeeping for the conservation of wild bees in nature reserves. We observed flower-visiting bees on flowers of Calluna vulgaris in sites differing in the distance to the next honey-bee hive and in sites with hives present and absent in the Lüneburger Heath, Germany. Additionally, we counted wild bee ground nests in sites that differ in their distance to the next hive and wild bee stem nests and stem-nesting bee species in sites with hives present and absent. We did not observe fewer honey bees or higher wild bee flower visits in sites with different distances to the next hive (up to 1,229 m). However, wild bees visited fewer flowers and honey bee visits increased in sites containing honey-bee hives and in sites containing honey-bee hives we found fewer stem-nesting bee species. The reproductive success, measured as number of nests, was not affected by distance to honey-bee hives or their presence but by availability and characteristics of nesting resources. Our results suggest that beekeeping in the Lüneburg Heath can affect the conservation of stem-nesting bee species richness but not the overall reproduction either of stem-nesting or of ground-nesting bees. Future experiments need control sites with larger distances than 500 m to hives. Until more information is available, conservation efforts should forgo to enhance honey bee stocking rates but enhance the availability of nesting resources.  相似文献   

13.
Bumble bees can forage on a large number of wild plants and crops. The survival of a colony depends on the availability of suitable food resources within foraging range and throughout their forage season. We studied the spatial and temporal use of floral resources by bumble bees in a set of 30 local plant communities and used these data to model colony survival under different combinations of patch size and bumble bee flight distance. Floral resources vary spatially and temporally at the landscape level, and bumble bees track these resources across the landscape during the season. The simulation model showed that different patterns of resources availability could affect the survival and distribution of bumble bee nests across the landscape. This model can be used to generate hypotheses explaining bumble bee richness and abundance that can be tested in real landscapes. Integrating the spatial and temporal dynamics of the flower resources used by bumble bees provides a new perspective that can be used to inform bumble bee conservation, particularly in the context of their widespread decline in recent decades.  相似文献   

14.
Body size latitudinal clines have been widley explained by the Bergmann's rule in homeothermic vertebrates. However, there is no general consensus in poikilotherms organisms in particular in insects that represent the large majority of wildlife. Among them, bees are a highly diverse pollinators group with high economic and ecological value. Nevertheless, no comprehensive studies of species assemblages at a phylogenetically larger scale have been carried out even if they could identify the traits and the ecological conditions that generate different patterns of latitudinal size variation. We aimed to test Bergmann's rule for wild bees by assessing relationships between body size and latitude at continental and community levels. We tested our hypotheses for bees showing different life history traits (i.e. sociality and nesting behaviour). We used 142 008 distribution records of 615 bee species at 50 × 50 km (CGRS) grids across the West Palearctic. We then applied generalized least squares fitted linear model (GLS) to assess the relationship between latitude and mean body size of bees, taking into account spatial autocorrelation. For all bee species grouped, mean body size increased with higher latitudes, and so followed Bergmann's rule. However, considering bee genera separately, four genera were consistent with Bergmann's rule, while three showed a converse trend, and three showed no significant cline. All life history traits used here (i.e. solitary, social and parasitic behaviour; ground and stem nesting behaviour) displayed a Bergmann's cline. In general there is a main trend for larger bees in colder habitats, which is likely to be related to their thermoregulatory abilities and partial endothermy, even if a ‘season length effect’ (i.e. shorter foraging season) is a potential driver of the converse Bergmann's cline particularly in bumblebees.  相似文献   

15.
Oligolectic bees are specialists that collect pollen from one or a few closely related species of plants, while polylectic bees are generalists that collect pollen from both related and unrelated species of plants. Because of their more restricted range of floral hosts, it is expected that specialists persist in more isolated populations than do generalists. We present data on the population structure of two closely related bee species sampled from a super abundant floral host in the southern Atacama Desert. Pairwise comparisons of population subdivision over identical distances revealed that the specialist bee had significantly more differentiated populations in comparison to the generalist. Further, populations of the specialist had significantly less genetic variation, measured as observed and expected heterozgyosity, than those of the generalist. Our data support the hypothesis of decreased gene flow among populations of the specialist bee even at equivalent geographic distances. The resulting reductions in effective population size for specialists make them particularly prone to extinction due to both demographic and genetic reasons. Our findings have important implications for the conservation of bees and other specialist insects. Deceased  相似文献   

16.
We studied the pollination of Orchis boryi at five different locations on the Greek mainland. Orchis boryi is food deceptive and obligatorily insect pollinated. Primary pollinators were Apis mellifera and Bombus spp., which foraged on rewarding plant species nearby and visited O. boryi in between. To analyse floral colour similarity among rewarding plants and O. boryi as perceived by bees, a model of bee colour vision was employed. For each food plant an index was calculated that described the probability of a bee foraging on it to subsequently choose an orchid flower. This choice probability correlated to colour distance according to the model of bee colour vision, indicating that bees chose the deceptive orchid more frequently if they foraged on more similarly coloured species. At different sites different plant species served as models. Bees foraging on food plants from which a high choice rate to the orchid was observed visited the orchid less often after approaching it than other bees, which is likely to reflect avoidance learning. In general, the pollination syndrome appears to be a generalized form of Batesian mimicry, in which similarity to rewarding plants determines reproductive success. As expected by negative density-dependent selection, individual fruit set and pollinia export rate correlated negatively with orchid density, but were unaffected by food plant density, orchid frequency, individual variation of labellum colour, labellum size, or mouth width of the flowers.  相似文献   

17.
Body size is often positively correlated with ecologically relevant traits such as fecundity, survival, resource requirements, and home range size. Ant colonies, in some respects, behave like organisms, and their colony size is thought to be a significant predictor of many behavioral and ecological traits similar to body size in unitary organisms. In this study, we test the relationship between colony size and field foraging distance in the ant species Temnothorax rugatulus. These ants forage in the leaf litter presumably for small arthropod prey. We found colonies did not differ significantly in their foraging distances, and colony size is not a significant predictor of foraging distance. This suggests that large colonies may not exhaust local resources or that foraging trips are not optimized for minimal distance, and thus that food may not be the limiting resource in this species. This study shows T. rugatulus are behaving in ways that differ from existing models of scaling.  相似文献   

18.
Capitol Reef National Park, in southcentral Utah, contains 22 small orchards planted with antique fruit varieties by Mormon pioneers beginning over a century ago. The orchards continue to be managed in a pick-and-pay program, which includes spraying with phosmet to suppress codling moth (Cydia pomonella L.). The park is also home to a rich diversity of flowering plants, many of which are rare, bee-pollinated, and have populations within 1 km of the orchards. Over 3 yr, we studied the short-term effects of phosmet spraying on bee populations: (1) foraging on plants within the orchard understory and adjacent to it; and (2) nesting in, and at several distances from, the orchards. We recorded a rich bee fauna (47 taxa) in the orchards and on plants nearby. In 2 yr (2002 and 2004), we found no difference in the number of native bee visits to several species of plants flowering in and near to orchards immediately before and 1 d after spraying. Conversely, our nesting studies using the semidomesticated alfalfa leafcutting bee, Megachile rotundata (F.), showed strong significant declines in the number of adult males, nesting females, and progeny production subsequent to spraying at distances up to 160 m from sprayed orchards where the bees were presumably foraging. We showed that M. rotundata is negatively affected by phosmet spraying and suggest that caution should be exercised in its use in areas where bees are apt to forage.  相似文献   

19.
Both male and female solitary bees visit flowers for rewards. Sex related differences in foraging efficiency may also affect their probability to act as pollinators. In some major genera of solitary bees, males can be identified from a distance enabling a comparative foraging-behavior study. We have simultaneously examined nectar foraging of males and females of three bee species on five plant species in northern Israel. Males and females harvested equal nectar amounts but males spent less time in each flower increasing their foraging efficiency at this scale. The overall average visit frequencies of females and males was 27.2 and 21.6 visits per flower per minute respectively. Females flew shorter distances increasing their visit frequency, relative foraging efficiency and their probability to pollinate. The proportion of conspecific pollen was higher on females, indicating higher floral constancy and pollination probability. The longer flights of males increase their probability to cross-pollinate. Our results indicate that female solitary bees are more efficient foragers; females seem also to be more efficient pollinators but males contribute more to long-distance pollen flow.  相似文献   

20.
In this study, the daily and seasonal influences of abiotic factors and the amount of floral resources on the foraging frequency of bees were determined. The experiments were performed, during 12 consecutive months, in the main floral sources used by bees in a secondary forest fragment. The foraging frequency of each bee species on flowers of each plant was recorded for 20-min periods, every hour. To verify whether the foraging activity is influenced by abiotic factors, Pearson’s correlation analysis and linear regression tests were performed for the dominant bee species. Temperature and luminosity were the two main abiotic factors regulating foraging activities of bees. A positive correlation was found between the foraging frequency of most bees and these two variables. Conversely, the foraging activity was influenced neither by the relative humidity nor by the wind speed. The activity of each species depends on a combination of factors that include not only abiotic variables, but also the amount of floral resources available during the day, body size, and behavior of each visitor. After a certain period of the day, the scarcity of floral resources produced by most plants can stimulate the bees to forage in the flowers early in subsequent days, which may occur before the period in which the abiotic conditions are really favorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号