首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substituted cysteine-accessibility method and two sulfhydryl-specific reagents, the methane-thiosulfonate derivative 2-aminoethyl methanethiosulfonate (MTSEA) and the alpha(2)-adrenergic receptor (alpha(2)-AR) agonist chloroethylclonidine (CEC), were used to determine the relative accessibility of engineered cysteines in the fifth transmembrane domain of the human alpha(2A)-AR (Halpha2A). The second-order rate constants for the reaction of the receptor with MTSEA and CEC were determined with the wild type Halpha2A (cysteine at position 201) and receptor mutants containing accessible cysteines at other positions within the binding-site crevice (positions 197, 200, and 204). The rate of reaction of CEC was similar to that of MTSEA at residues Cys-197, Cys-201, and Cys-204. The rate of reaction of CEC with Cys-200, however, was more than 5 times that of MTSEA, suggesting that these compounds may interact with two different receptor conformations. MTSEA, having no recognition specificity for the receptor, likely reacts with the predominant inactive receptor conformation (R), whereas the agonist CEC may stabilize and react preferentially with the active receptor conformation (R*). This hypothesis was consistent with three-dimensional receptor-ligand models, which further suggest that alpha(2A)-AR activation may involve the clockwise rotation of transmembrane domain 5.  相似文献   

2.
The extracellular domain of the subgroup A avian sarcoma and leukemia virus (ALSV-A) receptor contains a region that is related in sequence to the ligand-binding motifs of the low-density lipoprotein receptor (LDLR). This domain contains six cysteines that are highly conserved between different members of the LDLR protein superfamily, and these residues are presumed to participate in intrachain disulfide bonds. To assess the importance of each cysteine in the ALSV-A receptor, individual or multiple cysteines were mutated to alanines and the altered receptors were tested for the ability to confer susceptibility to viral infection. Receptors bearing single mutations allowed subgroup A viral entry, albeit at less than wild-type levels. Receptors containing two or three substitutions were completely inactive if one of the changed residues was Cys-35 or Cys-50. Of the altered receptors tested, the only exception to this rule was a functional receptor which lacked both Cys-35 and Cys-50, an activity that was dependent on the presence of other cysteines in this protein. Most interestingly, a receptor containing both Cys-35 and Cys-50 but lacking the other four cysteines was completely functional. These results demonstrate the importance of Cys-35 and Cys-50 for viral entry mediated by the ALSV-A receptor and show that in the presence of these two residues, all of the other cysteines in this protein can be removed without loss of this function.  相似文献   

3.
The human, bovine, murine and rat interferon (IFN)-alpha families contain 4 conserved cysteines located at positions 1, 29, 99 and 139 that are involved in disulfide bridges. Rat and murine IFN-alpha subspecies carry a fifth Cys (Cys-86) which is not conserved in bovine and human IFN-alpha subspecies except for human IFN-alpha 1. Changing Cys-86 in rat IFN-alpha 1 into Ser or Tyr virtually abolished antiviral activity. As shown by others, the substitution of Cys-86 to Ser in human IFN-alpha 1 had no pronounced effect on activity. This suggests that in contrast to human and bovine IFN-alpha, Cys-86 in rodent IFN-alpha plays a crucial role in receptor binding. Changing Cys-1 to Gly in rat IFN-alpha 1 also destroyed activity, in agreement with results obtained in the human IFN-alpha 1 system.  相似文献   

4.
The mature form of the secretory core protein (HBe protein) of human hepatitis B virus contains four cysteines which are located at amino acid positions -7, 48, 61, and 107 relative to the HBc start methionine. In addition, there is a cysteine, Cys-183, located in the C-terminal domain of the HBe precursor, which is cleaved during HBe maturation. Here, the significance of these cysteines for biosynthesis and antigenicity of the HBe protein was examined. The cysteines at positions -7 and 61 were found to be crucial for HBe biosynthesis. As has already been described, if the Cys at position -7 is mutated, disulfide-linked HBe homodimers which have both HBe antigenicity and HBc antigenicity are expressed. Here we show that these dimers are due to Cys-61-Cys-61 disulfide bridges which are formed only if the Cys at position -7 is not present. In the wild-type protein, this dimerization appears to be inhibited by formation of intramolecular disulfide bridges between the Cys at -7 and one of the internal cysteines. Moreover, Cys-61 is important for HBe biosynthesis in general since mutation of this amino acid results in production of HBe proteins which are either only poorly secreted or possess a different antigenicity.  相似文献   

5.
Of the 20 cysteines of rat brain tubulin, some react rapidly with sulfhydryl reagents, and some react slowly. The fast reacting cysteines cannot be distinguished with [14C]iodoacetamide, N-[(14)C]ethylmaleimide, or IAEDANS ([5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid]), since modification to mole ratios 1 cysteine/dimer always leads to labeling of 6-7 cysteine residues. These have been identified as Cys-305alpha, Cys-315alpha, Cys-316alpha, Cys-347alpha, Cys-376alpha, Cys-241beta, and Cys-356beta by mass spectroscopy and sequencing. This lack of specificity can be ascribed to reagents that are too reactive; only with the relatively inactive chloroacetamide could we identify Cys-347alpha as the most reactive cysteine of tubulin. Using the 3.5-A electron diffraction structure, it could be shown that the reactive cysteines were within 6.5 A of positively charged arginines and lysines or the positive edges of aromatic rings, presumably promoting dissociation of the thiol to the thiolate anion. By the same reasoning the inactivity of a number of less reactive cysteines could be ascribed to inhibition of modification by negatively charged local environments, even with some surface-exposed cysteines. We conclude that the local electrostatic environment of cysteine is an important, although not necessarily the only, determinant of its reactivity.  相似文献   

6.
The skeletal muscle Ca(2+)-release channel (ryanodine receptor type 1 (RyR1)) is a redox sensor, susceptible to reversible S-nitrosylation, S-glutathionylation, and disulfide oxidation. So far, Cys-3635 remains the only cysteine residue identified as functionally relevant to the redox sensing properties of the channel. We demonstrate that expression of the C3635A-RyR1 mutant in RyR1-null myotubes alters the sensitivity of the ryanodine receptor to activation by voltage, indicating that Cys-3635 is involved in voltage-gated excitation-contraction coupling. However, H(2)O(2) treatment of C3635A-RyR1 channels or wild-type RyR1, following their expression in human embryonic kidney cells, enhances [(3)H]ryanodine binding to the same extent, suggesting that cysteines other than Cys-3635 are responsible for the oxidative enhancement of channel activity. Using a combination of Western blotting and sulfhydryl-directed fluorescent labeling, we found that two large regions of RyR1 (amino acids 1-2401 and 3120-4475), previously shown to be involved in disulfide bond formation, are also major sites of both S-nitrosylation and S-glutathionylation. Using selective isotopecoded affinity tag labeling of RyR1 and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, we identified, out of the 100 cysteines in each RyR1 subunit, 9 that are endogenously modified (Cys-36, Cys-315, Cys-811, Cys-906, Cys-1591, Cys-2326, Cys-2363, Cys-3193, and Cys-3635) and another 3 residues that were only modified with exogenous redox agents (Cys-253, Cys-1040, and Cys-1303). We also identified the types of redox modification each of these cysteines can undergo. In summary, we have identified a discrete subset of cysteines that are likely to be involved in the functional response of RyR1 to different redox modifications (S-nitrosylation, S-glutathionylation, and oxidation to disulfides).  相似文献   

7.
Prostacyclin plays important roles in vascular homeostasis, promoting vasodilatation and inhibiting platelet thrombus formation. Previous studies have shown that three of six cytoplasmic cysteines, particularly those within the C-terminal tail, serve as important lipidation sites and are differentially conjugated to palmitoyl and isoprenyl groups (Miggin, S. M., Lawler, O. A., and Kinsella, B. T. (2003) J. Biol. Chem. 278, 6947-6958). Here we report distinctive roles for extracellular- and transmembrane-located cysteine residues in human prostacyclin receptor structure-function. Within the extracellular domain, all cysteines (4 of 4) appear to be involved in disulfide bonding interactions (i.e. a highly conserved Cys-92-Cys-170 bond and a putative non-conserved Cys-5-Cys-165 bond), and within the transmembrane (TM) region there are several cysteines (3 of 8) that maintain critical hydrogen bonding interactions (Cys-118 (TMIII), Cys-251 (TMVI), and Cys-202 (TMV)). This study highlights the necessity of sulfhydryl (SH) groups in maintaining the structural integrity of the human prostacyclin receptor, as 7 of 12 extracellular and transmembrane cysteines studied were found to be differentially indispensable for receptor binding, activation, and/or trafficking. Moreover, these results also demonstrate the versatility and reactivity of these cysteine residues within different receptor environments, that is, extracellular (disulfide bonds), transmembrane (H-bonds), and cytoplasmic (lipid conjugation).  相似文献   

8.
The involvement of a vicinally spaced dithiol group in steroid binding to the glucocorticoid receptor has been deduced from experiments with the thiol-specific reagent methyl methanethiolsulfonate and the vicinal dithiol-specific reagent sodium arsenite. The vicinally spaced dithiol appears to reside in the 16-kDa trypsin fragment of the receptor, which is thought to contain 3 cysteines (Cys-640, -656, and -661 of the rat receptor) and binds hormone with an approximately 23-fold lower affinity than does the intact 98-kDa receptor. We now report that the steroid binding specificity of preparations of this 16-kDa fragment and the intact receptor are virtually identical. This finding supports our designation of the 16-kDa fragment as a steroid-binding core domain and validates our continued use of this tryptic fragment in studies of steroid binding. To identify the cysteines which comprise the vicinally spaced dithiol group, and to examine further the role of cysteines in steroid binding, a total of five point mutant receptors were prepared: cysteine-to-serine for each suspected cysteine, cysteine-to-glycine for Cys-656, and the C656,661S double mutant. Unexpectedly, each receptor with a single point mutation still bound steroid. Even the double mutant (C656,661S) bound steroid with wild type affinity. These results suggest that none of these cysteines are directly required either for steroid binding to the glucocorticoid receptor or for heat shock protein 90 association with the receptor. However, the presence of Cys-656 was obligatory for covalent labeling of the receptor by [3H]dexamethasone 21-mesylate. Studies with preparations of the 98 and 16 kDa forms of these mutant receptors revealed both that Cys-656 and -661 comprise the vicinally spaced dithiols reacting with arsenite and that any two of the three thiols could form an intramolecular disulfide after treatment with low concentrations of methyl methanethiolsulfonate. These data, in conjunction with those from experiments on the effects of steric bulk on various receptor functions, support a model for the ligand binding cavity of the receptor that involves all three thiols in a flexible cleft but where thiol-steroid interactions are not essential for binding.  相似文献   

9.
Leptin, a 16-kDa adipocytic peptide hormone (product of ob gene), is known to play a key role in the control of body weight and exerts its influence by binding to its long-form receptor (Ob-Rb). Ob-Rb belongs to class I cytokine receptor superfamily and consists of an extracellular, transmembrane, and an intracellular domain. Cysteines including free and disulphide-bonded are known to play a significant role in recognition of leptin by its receptor and are known to be highly conserved in different organisms including human, macaca, mouse, dog, sheep, zebrafish, and medaca. Recently, the crystal structure of leptin-binding domain of human leptin receptor has been determined (1). Using the structural data, we analyzed the role of free cysteines in leptin-binding domain of leptin receptor through docking studies using Rosettadock. The conserved free cysteines namely Cys-604 and Cys-613 were mutated to alanines and this resulted in drastic change in the binding orientation of leptin and its receptor. Based on computational analysis, we propose that cysteines either free or involved in disulphide bridges might play a crucial role during signaling and might be the primary determinant of leptin-receptor interactions, the details of which will be discussed. Currently, understanding the structural basis of leptin and its binding to leptin receptor gains much significance since it might pave the way for designing inhibitors that might be used in controlling obesity.  相似文献   

10.
Isopenicillin N synthase (IPNS) from Cephalosporium acremonium contains 2 cysteine residues in positions 106 and 255 which are invariant in all IPNS sequences reported to date (Miller, J.R., and Ingolia, T.D. (1989) Mol. Microbiol. 3, 689-695). Although these residues have been postulated to play a role in catalysis (Samson, S.M., Chapman, J.L., Belagaje, R., Queener, S., and Ingolia, T.D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5705-5709) as well as enzyme inactivation (Perry, D., Abraham, E.P., and Baldwin, J.E. (1988) Biochem. J. 255, 345-351) little information exists regarding their oxidation state and reactivity. In this paper, the functions of these cysteines have been addressed by chemical modification techniques in combination with site-directed mutagenesis. In the intact wild type protein, both cysteines are inert toward 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetic acid. However, Cys-106, but not Cys-255, can be slowly modified by N-ethylmaleimide, and its modification is partially blocked by the presence of a substrate analog inhibitor. Complete modification of both cysteines by sulfhydryl reagents requires unfolding of the protein but not the presence of a disulfide reducing agent. The thiol content of IPNS is shown to be the same before and after exposing the enzyme to substrate even though during catalysis the enzyme is rapidly inactivated. The impact on catalysis due to alteration of the cysteines has been assessed using three site-specific mutants: Cys-106----Ser, Cys-255----Ser, and Cys-106,255----Ser. These mutant proteins have been purified as apoenzymes with the nature of the mutation verified by peptide mapping. The stoichiometry of metal required for activity remains as one equivalent of Fe2+/mol of enzyme in the mutants as in wild type IPNS. Compared with wild type, Cys-255----Ser shows a reduction in Vmax by 33%, and an increase in Km by 1.4-fold, while Cys-106----Ser and Cys-106,255----Ser, which have identical kinetic properties, exhibit a decrease in Vmax by 63% but an elevation of Km by 14-fold. The data presented demonstrate that 1) both cysteines are free thiols; 2) Cys-106 is more exposed than Cys-255; 3) substrate-induced inactivation is not caused by cysteine modification; 4) neither cysteine is absolutely essential for bond making or breaking events during catalysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Class III ribonucleotide reductase (RNR) is an anaerobic glycyl radical enzyme that catalyzes the reduction of ribonucleotides to deoxyribonucleotides. We have investigated the importance in the reaction mechanism of nine conserved cysteine residues in class III RNR from bacteriophage T4. By using site-directed mutagenesis, we show that two of the cysteines, Cys-79 and Cys-290, are directly involved in the reaction mechanism. Based on the positioning of these two residues in the active site region of the known three-dimensional structure of the phage T4 enzyme, and their structural equivalence to two cysteine residues in the active site region of the aerobic class I RNR, we suggest that Cys-290 participates in the reaction mechanism by forming a transient thiyl radical and that Cys-79 participates in the actual reduction of the substrate. Our results provide strong experimental evidence for a similar radical-based reaction mechanism in all classes of RNR but also identify important differences between class III RNR and the other classes of RNR as regards the reduction per se. We also identify a cluster of four cysteines (Cys-543, Cys-546, Cys-561, and Cys-564) in the C-terminal part of the class III enzyme, which are essential for formation of the glycyl radical. These cysteines make up a CX(2)C-CX(2)C motif in the vicinity of the stable radical at Gly-580. We propose that the four cysteines are involved in radical transfer between Gly-580 and the cofactor S-adenosylmethionine of the activating NrdG enzyme needed for glycyl radical generation.  相似文献   

12.
Native interleukin-2 (IL-2) contains three cysteines; two exist in a disulfide bridge (Cys-58 and Cys-105) and the third Cys-125 is a free sulfhydryl. In the presence of 6 M guanidine hydrochloride at alkaline pH, IL-2 is converted into three isomers. Each isomer represents one of the three possible disulfide-linked forms that can be generated from three cysteines. These three isomers were resolved on a C4 reverse-phase HPLC system. The identity of each of the three forms was determined by carboxymethylation of the free cysteines in each isomer with [3H]iodoacetic acid followed by determination of the labelled cysteines by tryptic peptide mapping. Tryptic peptide mapping of the more predominant of the two scrambled peaks showed it to be the Cys-105-S-S-Cys-125 linked form of IL-2. A Ser-125 construction of IL-2, which lacks a free cysteine, did not scramble under these conditions. These experiments demonstrate the utility of reverse-phase HPLC in studies of protein folding and disulfide bond structure.  相似文献   

13.
TRPA1 (transient receptor potential ankyrin 1) is an ion channel expressed in the termini of sensory neurons and is activated in response to a broad array of noxious exogenous and endogenous thiol-reactive compounds, making it a crucial player in chemical nociception. A number of conserved cysteine residues on the N-terminal domain of the channel have been identified as critical for sensing these electrophilic pungent chemicals, and our recent EM structure with modeled domains predicts that these cysteines form a ligand-binding pocket, allowing for the possibility of disulfide bonding between the cysteine residues. Here, we present a comprehensive mass spectrometry investigation of the in vivo disulfide bonding conformation and in vitro reactivity of 30 of the 31 cysteine residues in the TRPA1 ion channel. Four disulfide bonds were detected in the in vivo TRPA1 structure: Cys-666-Cys-622, Cys-666-Cys-463, Cys-622-Cys-609, and Cys-666-Cys-193. All of the cysteines detected were reactive to N-methylmaleimide (NMM) in vitro, with varying degrees of labeling efficiency. Comparison of the ratio of the labeling efficiency at 300 μM versus 2 mM NMM identified a number of cysteine residues that were outliers from the mean labeling ratio, suggesting that protein conformation changes rendered these cysteines either more or less protected from labeling at the higher NMM concentrations. These results indicate that the activation mechanism of TRPA1 may involve N-terminal conformation changes and disulfide bonding between critical cysteine residues.  相似文献   

14.
Rat C-reactive protein (CRP) is unique among mammalian CRPs in being a glycoprotein and in containing a covalently linked dimer in its pentameric structure. To investigate these features, cDNA clones encoding rat CRP were isolated from an expression library, and the primary structure of the protein was derived. Taken along with the results of Northern blotting, we conclude that a single mRNA of approximately 2,500 nucleotides codes for a precursor of rat CRP with a signal sequence of 19 amino acids and a polypeptide of 211 amino acids, the latter sharing extensive homology with human, rabbit, and mouse CRPs. The deduced sequence agreed with results obtained from partial microsequencing and mapping by fast atom bombardment-mass spectrometry. Two potential sites for N-glycosylation (Asn-128 and Asn-147) and a C-terminal heptapeptide (Leu-205 to Ser-211, containing two cysteines at positions 208 and 209) were unique to rat CRP. The protein was also shown to be composed of five apparently identical monomers, two of which form a dimer linked by two interchain disulfide bonds involving Cys-208 and Cys-209. These same cysteines form an intrachain disulfide bond in the other three monomers. The primary structure of rat CRP and the basis of dimer formation have, therefore, been elucidated.  相似文献   

15.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor (PDGF)-induced mitogenesis and cytoskeleton rearrangement because it is able to bind and dephosphorylate the activated receptor. LMW-PTP presents two cysteines in positions 12 and 17, both belonging to the catalytic pocket; this is a unique feature of LMW-PTP among all protein tyrosine phosphatases. Our previous results demonstrated that in vitro LMW-PTP is oxidized by either H(2)O(2) or nitric oxide with the formation of a disulfide bond between Cys-12 and Cys-17. This oxidation leads to reversible enzyme inactivation because treatment with reductants permits catalytic activity rescue. In the present study we investigated the in vivo inactivation of LMW-PTP by either extracellularly or intracellularly generated H(2)O(2), evaluating its action directly on its natural substrate, PDGF receptor. LMW-PTP is oxidized and inactivated by exogenous oxidative stress and recovers its activity after oxidant removal. LMW-PTP is oxidized also during PDGF signaling, very likely upon PDGF-induced H(2)O(2) production, and recovers its activity within 40 min. Our results strongly suggest that reversibility of in vivo LMW-PTP oxidation is glutathione-dependent. In addition, we propose an intriguing and peculiar role of Cys-17 in the formation of a S-S intramolecular bond, which protects the catalytic Cys-12 from further and irreversible oxidation. On the basis of our results we propose that the presence of an additional cysteine near the catalytic cysteine could confer to LMW-PTP the ability to rapidly recover its activity and finely regulate PDGF receptor activation during both extracellularly and intracellularly generated oxidative stress.  相似文献   

16.
Mutations at critical residue positions in transmembrane span 7 (TM7) of the serotonin transporter affect the Na(+) dependence of transport. It was possible that these residues, which form a stripe along one side of the predicted alpha-helix, formed part of a water-filled pore for Na(+). We tested whether cysteine substitutions in TM7 were accessible to hydrophilic, membrane-impermeant methanethiosulfonate (MTS) reagents. Although all five cysteine-containing mutants tested were sensitive to these reagents, noncysteine control mutants at the same positions were in most cases equally sensitive. In all cases, MTS sensitivity could be traced to changes in accessibility of a native cysteine residue in extracellular loop 1, Cys-109. Moreover, none of the TM7 cysteines reacted with the biotinylating reagent MTSEA-biotin when tested in the C109A background. It is thus unlikely that the critical stripe forms part of a water-filled pore. Instead, studies of the ion dependence of the reaction between Cys-109 and MTS reagents lead to the conclusion that TM7 is involved in propagating conformational changes caused by ion binding, perhaps as part of the translocation mechanism. The critical stripe residues on TM7 probably represent a close contact region between TM7 and one or more other TMs in the transporter's three-dimensional structure.  相似文献   

17.
The central helix of calmodulin functions as a flexible tether   总被引:13,自引:0,他引:13  
Using site-directed mutagenesis we have created an altered calmodulin in which Gln-3 and Thr-146 have both been replaced by cysteines. We have reacted this protein with the bifunctional reagent, bismaleimidohexane, forming an intramolecular cross-link between the two cysteines. In the crystal structure of native calmodulin alpha-carbons at positions 3 and 146 are 37 A apart. In the bismaleimidohexane cross-linked protein these atoms can be no more than 19 A apart, and model building studies indicate that there is probably a bend in the central helix of calmodulin. A second modified calmodulin was generated by cleaving the central helix of the cross-linked protein at Lys-77 with trypsin. In this molecule, the two lobes of calmodulin are joined solely by the bismaleimidohexane cross-link, which bridges Cys-3 and Cys-146. Vm and Kact values for activation of myosin light chain kinase activity by the cross-linked and cross-linked/trypsinized proteins are not significantly different from those for the control protein. This result indicates that one role for the central helix may be to serve as a flexible tether between the calmodulin lobes. This is consistent with a model calmodulin-enzyme complex in which the central helix is bent, and the two lobes exert a concerted effect. A detailed model of this type has been proposed for the calmodulin-myosin light chain kinase complex (Persechini, A. and Kretsinger, R.H. (1988) J. Cardiovasc. Pharmacol., in press).  相似文献   

18.
Metabotropic glutamate receptor 1 (mGluR1) expresses at the cell surface as disulfide-linked dimers and can be reduced to monomers with sulfhydryl reagents. To identify the dimerization domain, we transiently expressed in HEK-293 cells a truncated version of mGluR1 (RhodC-R1) devoid of the extracellular domain (ECD). RhodC-R1 was a monomer in the absence or presence of the reducing agents, suggesting that dimerization occurs via the ECD. To identify cysteine residues involved in dimerization within the ECD, cysteine to serine point mutations were made at three cysteines within the amino-terminal half of the ECD. A mutation at positions Cys-67, Cys-109, and Cys-140 all resulted in significant amounts of monomers in the absence of reducing agents. The monomeric C67S and C109S mutants were not properly glycosylated, failed to reach the cell surface, and showed no glutamate response, indicating that these mutant receptors were improperly folded and/or processed and thus retained intracellularly. In contrast, the monomeric C140S mutant was properly glycosylated, processed, and expressed at the cell surface. Phosphoinositide hydrolysis assay showed that the glutamate response of the C140S mutant receptor was similar to the wild type receptor. Substitution of a cysteine for Ser-129, Lys-134, Asp-143, and Thr-146 on the C140S mutant background restored receptor dimerization. Taken together, the results suggest that Cys-140 contributes to intermolecular disulfide-linked dimerization of mGluR1.  相似文献   

19.
Disulfide bonds of herpes simplex virus type 2 glycoprotein gB.   总被引:1,自引:1,他引:0       下载免费PDF全文
Glycoprotein B (gB) is the most highly conserved envelope glycoprotein of herpesviruses. The gB protein is required for virus infectivity and cell penetration. Recombinant forms of gB being used for the development of subunit vaccines are able to induce virus-neutralizing antibodies and protective efficacy in animal models. To gain structural information about the protein, we have determined the location of the disulfide bonds of a 696-amino-acid residue truncated, recombinant form of herpes simplex virus type 2 glycoprotein gB (HSV gB2t) produced by expression in Chinese hamster ovary cells. The purified protein, which contains virtually the entire extracellular domain of herpes simplex virus type 2 gB, was digested with trypsin under nonreducing conditions, and peptides were isolated by reversed-phase high-performance liquid chromatography (HPLC). The peptides were characterized by using mass spectrometry and amino acid sequence analysis. The conditions of cleavage (4 M urea, pH 7) induced partial carbamylation of the N termini of the peptides, and each disulfide peptide was found with two or three different HPLC retention times (peptides with and without carbamylation of either one or both N termini). The 10 cysteines of the molecule were found to be involved in disulfide bridges. These bonds were located between Cys-89 (C1) and Cys-548 (C8), Cys-106 (C2) and Cys-504 (C7), Cys-180 (C3) and Cys-244 (C4), Cys-337 (C5) and Cys-385 (C6), and Cys-571 (C9) and Cys-608 (C10). These disulfide bonds are anticipated to be similar in the corresponding gBs from other herpesviruses because the 10 cysteines listed above are always conserved in the corresponding protein sequences.  相似文献   

20.
Conformation, structure, and oligomeric state of immunoglobulins not only control quality and functional properties of antibodies but are also critical for immunoglobulins secretion. Unassembled immunoglobulin heavy chains are retained intracellularly by delayed folding of the C(H)1 domain and irreversible interaction of BiP with this domain. Here we show that the three C(H)1 cysteines play a central role in immunoglobulin folding, assembly, and secretion. Remarkably, ablating all three C(H)1 cysteines negates retention and enables BiP cycling and non-canonical folding and assembly. This phenomenon is explained by interdependent formation of intradomain and interchain disulfides, although both bonds are dispensable for secretion. Substituting Cys-195 prevents formation not only of the intradomain disulfide, but also of the interchain disulfide bond with light chain, BiP displacement, and secretion. Mutating the light chain-interacting Cys-128 hinders disulfide bonding of intradomain cysteines, allowing their opportunistic bonding with light chain, without hampering secretion. We propose that the role of C(H)1 cysteines in immunoglobulin assembly and secretion is not simply to engage in disulfide bridges, but to direct proper folding and interact with the retention machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号