首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guanylate cyclase has been purified 60-fold from cell extracts of the bacterium Caulobacter crescentus. It has a molecular weight of approximately 140,000 and is dependent upon Mn2+ for activity. Enzymic activity is unaffected by cyclic AMP, cyclic GMP or N6,O2′-dibutyryl cyclic AMP but is stimulated by N2,O2′-dibutyryl cyclic GMP. The partially purified preparation of guanylate cyclase does not contain detectable adenylate cyclase activity.  相似文献   

2.
Chronic ascorbate deprivation of guinea pigs decreased splenic cell cyclic GMP levels (80%); ascorbate (1 mM) addition to these cells in vitro restored the cellular concentration to control levels. Splenic cells from non-scorbutic animals also exhibited increases in cyclic GMP levels in response to exogenous ascorbate whereas thiol reducing agents diminished cellular cyclic GMP concentration. Agents that inhibit the propagation of free radicals prevented this cellular effect of ascorbate while agents known to interfere with or promote H2O2 production had no effect. Guanylate cyclase activity in cell lysates increased after treatment of intact cells with ascorbate; dithiothreitol reversed this effect. Ascorbate also enhanced guanylate cyclase activity in cell lysates. The results suggest that oxidizing equivalents in the form of the monoanionic free radical of ascorbate alter cyclic GMP metabolism in these cells by activating guanylate cyclase via a mechanism involving oxidation of a cyclase-related component.  相似文献   

3.
John P. Durham 《Life sciences》1980,26(17):1423-1430
Isoproterenol (0.3 mmole/kg body wt.), when injected into the mouse intraperitoneally, increases the weight by 35% and stimulates DNA synthesis 30-fold in the parotid gland. The induction of both hypertrophy and hyperplasia is completely inhibited by ethanol at a dose of 200 mmole/kg body wt. but is almost unaffected by 60 mmole/kg. The full inhibiton of both growth parameters is observed when ethanol is administered up to 5 hr after isoproterenol. Partial inhibition is observed when ethanol is given as long as 15 hr after isoproterenol. It contrast ethanol did not alter the secretion of α-amylase in response to isoproterenol. Ethanol had no effect upon the rise in cyclic GMP level caused by isoproterenol but augmented the rise in cyclic GMP In agreement with these invivo observations, low concentrations of ethanol activated adenylate cyclase invitro, however guanylate cyclase activity was quite strongly inhibited. Although high levels of ethanol (300 mmole/kg) inhibited the induction of both ornithine decarboxylase and S-adenosylmethionine decarboxylase little inhibition was seen at 200 mmole/kg suggesting that the interference with polyamine metabolism is not the mechanism of the ethanol effect upon isoproterenol-induced parotid growth.  相似文献   

4.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

5.
Adenosine 3',5' cyclic monophosphate in Euglena gracilis   总被引:2,自引:0,他引:2  
Euglena gracilis contains in high concentration the enzymes for the synthesis and degradation of cyclic AMP. The synthetic enzyme, adenyl cyclase is mainly associated with a particulate fraction which sediments at 7,000–30,000xg whereas the degradative enzyme, 3′5′ nucleotide phosphodiesterase, is soluble (does not sediment at 78,000xg). The adenyl cyclase activity is stimulated somewhat by prostaglandins and by catecholamines, agents which markedly stimulate cyclase in appropriate mammalian tissues. There is no detectable activity of guanyl cyclase, the enzyme which synthesizes cyclic GMP. Euglena also contains a cyclic AMP stimulated protein kinase which is associated with a particulate fraction sedimenting at 30,000xg.  相似文献   

6.
The biochemical characteristics of rat testicular guanylate cyclase were investigated and the activity and subcellular distribution of the enzyme was determined during testicular development. Examination of the effects of metal ions, nucleotides, detergents and other in vitro activators on the activity of guanylate cyclase revealed that the testicular enzyme is similar in most respects to guanylate cyclase isolated from other mammalian tissues. Changes in the total activity of guanylate cyclase during testicular development paralleled changes in the tissue concentration of cyclic GMP; i.e. guanylate cyclase activity and tissue cyclic GMP were highest during the early stages of development. Subcellular fractionation revealed that the activity of the soluble form of guanylate cyclase was best correlated with tissue cyclic GMP. Bichemical analysis of the soluble enzyme prepared from testes of neonatal and adult rats did not reveal any significant differences in the characteristics of the enzyme during ontogeny with the exception of a 2.5 fold increase in V noted in the neonatal testis. The results of this study are consistent with a molecular mechanism that allows independent regulation of the different forms of guanylate cyclase.  相似文献   

7.
The biochemical characteristics of rat testicular guanylate cyclase were investigated and the activity and subcellular distribution of the enzyme was determined during testicular development. Examination of the effects of metal ions, nucleotides, detergents and other in vitro activators on the activity of guanylate cyclase revealed that the testicular enzyme is similar in most respects to guanylate cyclase isolated from other mammalian tissues. Changes in the total activity of guanylate cyclase during testicular development paralleled changes in the tissue concentration of cyclic GMP; i.e. guanylate cyclase activity and tissue cyclic GMP were highest during the early stages of development. Subcellular fractionation revealed that the activity of the soluble form of guanylate cyclase was best correlated with tissue cyclic GMP. Biochemical analysis of the soluble enzyme prepared from testes of neonatal and adult rats did not reveal any significant differences in the characteristics of the enzyme during ontogeny with the exception of a 2.5 fold increase in V noted in the neonatal testis. The results of this study are consistent with a molecular mechanism that allows independent regulation of the different forms of guanylate cyclase.  相似文献   

8.
Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) was purified 2250-fold from the synaptosomal soluble fraction of rat brain. The specific activity of the purified enzyme reached 41 nmol cyclic GMP formed per min per mg protein at 37 degrees C. In the purified preparation, GTPase activity was not detected and cyclic GMP phosphodiesterase activity was less than 4% of guanylate cyclase activity. The molecular weight was approx. 480 000. Lubrol PX, hydroxylamine, or NaN3 activated the guanylate cyclase in crude preparations, but had no effect on the purified enzyme. In contrast, NaN3 plus catalase, N-methyl-N'-nitro-N-nitrosoguanidine or sodium nitroprusside activated the purified enzyme. The purified enzyme required Mn2+ for its activity; the maximum activity was observed at 3-5 mM. Cyclic GMP activated guanylate cyclase activity 1.4-fold at 2 mM, whereas inorganic pyrophosphate inhibited it by about 50% at 0.2 mM. Guanylyl-(beta,gamma-methylene)-diphosphonate and guanylyl-imidodiphosphate, analogues of GTP, served as substrates of guanylate cyclase in the purified enzyme preparation. NaN3 plus catalase or N-methyl-N'-nitro-N-nitrosoguanidine also remarkably activated guanylate cyclase activity when the analogues of GTP were used as substrates.  相似文献   

9.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

10.
Purified hepatic soluble guanylate cyclase (EC 4.6.1.2) had maximal specific activities in the unactivated state of 0.4 and 1 μmol cyclic GMP min?1 mg protein?1, when MgGTP and MnGTP, respectively, were used as substrates. The apparent Km for GTP was 85 or 10 μm in the presence of excess Mg2+ or Mn2+, respectively. Guanylate cyclase purified as described was deficient in heme but could be readily reconstituted with heme by reacting enzyme with hematin and excess dithiothreitol at 4 °C and pH 7.8. Unpurified guanylate cyclase was activated 20- to 84-fold by NO, nitroso compounds, NO-heme, and protoporphyrin IX. The purified enzyme was only slightly (2- to 3-fold) activated by NO and nitroso compounds but was markedly (50-fold) activated by NO-heme and protoporphyrin IX, achieving maximal specific activities of 10 μmol cyclic GMP min?1 mg protein?1. Enzyme activation by NO and nitroso compounds was restored by addition of hematin or by reconstitution of guanylate cyclase with heme. Excess hematin, however, inhibited enzyme activity. A partially purified heat-stable factor (activation-enhancing factor) was found to enhance (2- to 35-fold) enzyme activation without directly stimulating guanylate cyclase. In the presence of optimal concentrations of hematin, enzyme activation was still increased (2-fold) by the activation-enhancing factor but not by bovine serum albumin. Guanylate cyclase was markedly inhibited by SH reactive agents such as cystine, o-iodosobenzoic acid, periodate, and 5,5′-dithiobis (2-nitrobenzoic acid). In addition, CN? and FMN inhibited enzyme activation by NO-heme, but not by protoporphyrin IX, and did not affect basal enzymatic activity. Hepatic soluble guanylate cyclase appears to possess SH groups required for catalysis and to require heme and/or other unknown factors for the full expression of enzyme activation by NO and nitroso compounds.  相似文献   

11.
A cyclic AMP dependent protein kinase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A cyclic AMP-dependent protein kinase was found to appear during the time course of development of Dictyosteliumdiscoideum. No cyclic AMP dependency was observed at any stage of development in crude 110,000 X G soluble extracts. After partial purification, however, extracts from post-aggregation stages contained enzyme that was activated up to 6-fold by cyclic AMP, whereas protein kinase from earlier stages was not affected by cyclic AMP. Likewise, cyclic AMP binding activity increased from the aggregation to the slug stage of development. Approximately one-half of the total cyclic AMP binding activity co-purified with the cyclic AMP dependent protein kinase. The enzyme from Dictyostelium showed similarities to mammalian protein kinases with respect to its kinetic properties but differed in its behavior on ion-exchange chromatography.  相似文献   

12.
The purified membrane-bound form of guanylate cyclase was incorporated into artificial unilamellar phospholipid vesicles. The rate and extent of enzyme incorporation into the vesicles was dependent upon the phospholipid concentration and the time period of incubation. The enzyme was incorporated at a significantly faster rate after removal of carbohydrate with endoglycosidase H. The incorporation of the enzyme led to a 10-fold decrease in the apparent maximal velocity and a 2-fold increase in the apparent Michaelis constant for MnGTP. Extraction of liposomes containing guanylate cyclase with 0.2% Lubrol PX resulted in the recovery of 85% of the original amount of added activity, suggesting that the decrease in maximal velocity was not due to enzyme denaturation. Phosphatidylcholine liposomes differentially effected the activity of the membrane-form of guanylate cyclase, dependent on the nature of the fatty acid present on the phospholipid. Specific activities ranged between 458 nmol/min per mg and 2.6 mumol/min per mg, dependent upon the fatty acids present. Liposomes containing the membrane-bound form of guanylate cyclase were subsequently fused with erythrocytes using poly(ethylene glycol) 4000 in attempts to introduce the enzyme into intact cells. The enzyme was successfully introduced into the erythrocytes; greater than 90% of the enzyme activity was subsequently shown to be associated with erythrocyte membranes. Cyclic GMP concentrations of erythrocytes increased from essentially nondetectable to 4 pmol/10(9) cells after introduction of the enzyme. These results demonstrate that guanylate cyclase can be incorporated into liposomes in an active state and that such liposomes can be used to introduce the enzyme into cells where it can subsequently function to generate cyclic GMP.  相似文献   

13.
Guanylate cyclase (E.C. 4.6.1.2.) was investigated in the accessory reproductive gland of the male house cricket, Acheta domesticus, which is known to accumulate exceptionally high levels of guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Accessory gland guanylate cyclase activity was linear with time for at least one hour, and with enzyme concentration to about 5 mg soluble protein per ml. Activity was dependent on Mn2+ and was maximal at pH 7.3 to 8.0. Sodium fluoride had no effect on activity, but sodium azide was slightly stimulatory. About 80% of the activity was sedimentable at 16,000 g, and both soluble and particulate activities were increased slightly in the presence of Triton X-100. Kinetic analysis indicated half-maximal velocity at 85 μM GTP in the presence of excess Mn2+, and reciprocal plots were concave upward. Changes in activity during maturation of the gland were small, and did not provide evidence for a regulatory role of guanylate cyclase in the accumulation of accessory gland cyclic GMP. The regulation and rôle of cyclic GMP in the accessory gland are discussed.  相似文献   

14.
Guanylate cyclase (EC 4.6.1.2.) and cyclic GMP phosphodiesterase (EC 3.1.4.-.) activity were measured in three subcellular fractions of Physarum polycephalum macroplasmodia isolated at intervals during synchronous growth. In a particulate fraction prepared by high-speed centrifugation guanylate cyclase activity was twice to ten times that of other fractions and highest in mid S and late G2. Two-thirds of the cyclic GMP phosphodiesterase activity was in a soluble fraction but there was no significant change in enzyme activity or distribution during the mitotic cycle.  相似文献   

15.
Guanylate cyclase from crude homogenates of vegetative Dictyosteliumdiscoideum has been characterized. It has a pH optimum of 8.0, temperature optimum of 25°C and requires 1 mM dithiothreitol for optimal activity. It strongly prefers Mn++ to Mg++ as divalent cation, requires Mn++ in excess of GTP for detectable activity, and is inhibited by high Mn++ concentrations. It has an apparent Km for GTP of approximately 517 μM at 1 mM excess Mn++.The specific activity of guanylate cyclase in vegetative homogenates is 50–80 pmoles cGMP formed/min/mg protein. Most of the vegetative activity is found in the supernatant of a 100,000 x g spin (S100). The enzyme is relatively unstable. It loses 40% of its activity after 3 hours storage on ice. Enzyme activity was measured from cells that had been shaken in phosphate buffer for various times. It was found that the specific activity changed little for at least 8 hours. Cyclic AMP at 10?4 M did not affect the guanylate cyclase activity from crude homogenates of vegetative or 6 hour phosphate-shaken cells.  相似文献   

16.
Streptozotocin, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and N-methyl nitrosourea, compounds with both oncogenic and cytotoxic properties, increased guanylate cyclase activity in the 100 000 × g soluble fractions of rat renal cortex and liver 35- to 65-fold over basal values. Particulate enzyme activities of these tissues were increased 2- to 4-fold by a maximally effective concentration of the nitrosoureas. In the presence of the cyclic nucleotide phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, maximally effective concentrations of these nitrosoureas increased cyclic GMP accumulation of hepatic and renal cortical slices to peak levels 7- to 10-fold over control in 30 min. By contrast, with the structurally related carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) peak increases occurred in 5–10 min and were 40- to 70-fold over control levels in renal cortex and liver, respectively. Unlike the Ca2+-dependent actions of cholinergic stimuli on cyclic GMP, the nitrosoureas and MNNG increased cyclic GMP in either the presence or absence of extracellular Ca2+. Moreover, while basal soluble guanylate cyclase of renal cortex was highly Mn2+-dependent and decreased 85% when either Mg2+ or Ca2+ was employed as sole divalent cation in reaction mixtures, the actions of nitrosoureas on enzyme activity were well expressed with either Mn2+ or Mg2+, but not with Ca2+, as sole divalent cation. Improved utilization of Mg2+ by guanylate cyclase in the presence of nitrosoureas would favor enhanced enzyme activity under cellular conditions where Mg2+ is abundant. In the presence of maximally stimulatory concentrations of streptozotocin or BCNU, high concentrations of Mg2+ or Mn2+ further increased soluble guanylate cyclase, suggesting important differences in metal and nitrosourea stimulation of enzyme activity.Preincubation of supernatant fractions with nitrosoureas plus dithiothreitol inhibited the action of the N-nitroso compounds to increase renal cortical guanylate cyclase. Glutathione and cysteine were also inhibitory, but less effective than dithiothreitol. Initial incubation of nitrosoureas with dithiothreitol in buffer alone similarly suppressed the subsequent action of the N-nitroso compounds on guanylate cyclase, and implicated direct chemical interactions. Prior incubation of renal cortical supernatant fractions with the SH blockers N-ethylmaleimide or maleimide significantly suppressed guanylate cyclase activation mediated by streptozotocin or BCNU. Direct drug interactions seemed unlikely, since effects of the inhibitors were optimally expressed by initial exposure of the supernatant fraction of tissue to the SH blockers and were not potentiated by a 30 min preincubation of the SH blockers and nitrosoureas in buffer alone.Thus, nitrosoureas activate and alter the metal requirements of soluble guanylate cyclase and increase cellular cyclic GMP in the presence or absence of extracellular Ca2+. Activation of soluble guanylate cyclase by nitrosoureas may involve an interaction of these agents with tissue SH groups, and possibly SH to SS transformation. Stimulation of the guanylate cyclase system by nitrosoureas could be related to the oncogenic actions of these agents.  相似文献   

17.
1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors.  相似文献   

18.
A Ca2+-binding protein (TCBP), which was isolated from Tetrahymena pyriformis, enhanced about 20-fold particulate-bound guanylate cyclase activity in Tetrahymena cells in the presence of a low concentration of Ca2+, while the adenylate cyclase activity was not increased. The enhancement was eliminated by ethylene glycol-bis (β-aminoethyl ether)-N,N′-tetraacetic acid. The enzyme activity was not stimulated by rabbit skeletal muscle troponin-C, the Ca2+-binding component of troponin, or other some proteins. In the presence of TCBP, stimulating effect of calcium ion on the enzyme activity was observed within the range of pCa 6.0 to 4.6, and was immediate and reversible.  相似文献   

19.
Homogenates of adult Schistosoma mansoni (blood flukes), isolated from the porto-mesenteric veins of infected mice, contain substantial activities of adenylyl cyclase, cyclic AMP phosphodiesterase, and a cyclic AMP stimulated protein kinase. The adenylyl cyclase, which is largely sedimentable at 10,000xg, is stimulated 20-fold by 10mM sodium fluoride and 1.4 to 2-fold by serotonin, glucagon, prostaglandins E1, E2 or B1. The phosphodiesterase, which is largely sedimentable at 10,000xg, is inhibited by both aminophylline and papaverine but is not influenced by 10mM sodium fluoride. The protein kinase, which is present in the 10,000xg supernatant is stimulated 4 to 8-fold by either cyclic AMP or cyclic GMP. There is a preference for cyclic AMP (K12 = 1.1×10?7M) over cyclic GMP (K12 = 4.5×10?6M). If intact worms are incubated in a glucose free medium there is a mobilization of glycogen stores which is preceded by a rise in cyclic AMP concentration. In a medium with 5mM glucose there is neither a rise in cyclic AMP nor mobilization of glycogen.  相似文献   

20.
The intracellular location of guanylate cyclase was examined in sperm from two species of sea urchin, Strongylocentrotus purpuratus and Lytechinus pictus, and from the tube worm Chaetopterus variopedatus. Cells suspended in a medium isotonic with sea water were passed repeatedly through a 23-gauge hypodermic needle to break flagella from heads. This preparation was then fractionated by two methods, one based on centrifugation over a 25% sucrose medium and the other involving repeated differential centrifugation, to resolve flagella from heads. Guanylate cyclase specific activity was increased 3.5–4.5-fold in the flagellar fraction relative to the starting sperm homogenate. Relatively little activity was present in the head fraction where specific activity was 1101100 that of the flagella. Plasma membranes were separated from axonemal microtubules by dialyzing flagella against low ionic strength buffer, followed by centrifugation over a 40% sucrose medium. Although the overall recovery of guanylate cyclase was low, the specific activity in the plasma membrane fraction was increased two- to threefold over the dialyzed flagella, and over 90% of the recovered activity resided in this fraction. Thus the flagellar plasma membrane is a site rich in guanylate cyclase. It could not be determined, however, whether this is the only intracellular locale of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号