首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These experiments have investigated cellular mechanisms involved in the generation of cellular immune responses to human acute leukemic blasts. Because normal human lymphocytes are not able to recognize immunologically, in vitro, lymphocytes from MHC identical siblings, the present studies have examined the in vitro proliferative and cytotoxic responses of normal lymphocytes to MHC identical AML and ALL blasts. In those cases where acute leukemic cells were unable to induce a proliferative response by MHC identical lymphocytes, the generation of effective anti-leukemic cytotoxicity required the addition of unrelated stimulating cells to the sensitization culture. In contrast, leukemic blasts that induced a proliferative response by MHC identical lymphocytes were also able to stimulate anti-leukemic cytotoxicity. This could be augmented by the addition of unrelated stimulating cells to the sensitization culture. The specificity of anti-leukemic cell cytotoxicity was demonstrated in all instances by simultaneous testing of putative killer cells on 51Cr leukemic blasts as well as 51Cr-labeled MHC identical phytohemagglutinin blasts or normal lymphocytes. Simultaneous sensitization to MHC identical leukemic blasts and unrelated stimulating lymphocytes did not invariably generate anti-leukemic cytotoxicity even when allogeneic cytotoxicity was observed; the absence of demonstrable suppressor activity in these nonreactive combinations suggested that some individuals may be specifically immunoincompetent, and thereby unable to generate effective anti-leukemic CML.  相似文献   

2.
The ability of acute lymphoblastic leukemia (ALL) blasts to mediate costimulatory signals during T-lymphocyte activation was investigated in an experimental model in which monoclonal T-cell populations were stimulated with standardized activation signals (anti-CD3 and anti-CD28 monoclonal antibodies; phytohemagglutinin, PHA). Leukemia cells from 12 consecutive ALL patients with high peripheral blood blast counts were studied. Proliferative T-cell responses were detected for a majority of these patients when irradiated leukemia blasts were used as accessory cells during activation. T-cell cytokine release was also observed for most patients when using nonirradiated ALL accessory cells. Low or undetectable cytokine levels were usually observed for CD8+ clones, whereas the CD4+ clones often showed a broad cytokine response with release of interleukin-2 (IL-2), IL-4, IL-10, IL-13 and interferon gamma(IFN-gamma) in the presence of the ALL accessory cells. ALL blasts were also able to function as allostimulatory cells for normal peripheral blood mononuclear responder cells. However, both T-cell proliferation and cytokine release showed a wide variation between ALL patients. The accessory cell function of ALL blasts showed no correlation with the release of immunomodulatory mediators (IL-2, IL-10, IL-15) or the expression of any single adhesion/costimulatory membrane molecule (CD54, CD58, CD80, CD86) by the blasts. We conclude that for a majority of patients, native ALL blasts can mediate costimulatory signals needed for accessory cell-dependent T-cell activation, but differences in costimulatory capacity between ALL patients affects both the proliferative responsiveness and cytokine release by activated T cells.  相似文献   

3.
Based on the presence or absence of erythrocyte receptors(E) a T cell marker, acute lymphocytic leukemia (ALL), can be divided into E+ALL and E-ALL. We studied cell surface antigens on blasts from 12 children with untreated ALL: eight with E-ALL and four with E+ALL. Heterologous antisera were raised against thymus cells, E+ and E-ALL blasts, appropriately absorbed and tested by immunofluorescence and a radiolabeled antibody assay with normal and leukemic lymphoid cells. By both methods, anti-thymus and anti-E+ALL sera reacted with human thymocytes. Specific binding of anti-E+ALL serum to T antigens was indicated by the fact that a single absorption with thymocytes abolished its binding to allogenic thymocytes, and the reactivity of anti-E+ALL serum with thymus, blood and bone marrow lymphocytes was similar to that of anti-thymus serum. After exhaustive absorption with blood leukocytes, anti-E+ALL and E-ALL sera were negative against normal lymphocytes and bone marrow cells from children with ALL in remission. Anti-thymus and anti-E+ALL sera reacted with blasts from patients with E+ALL, but not with E-ALL. In contrast, anti-E+ALL serum reacted with 40 to 96% of blasts from all children with E-ALL, whereas of the four patients with E+ALL, two were negative and two had the lowest percentage of immunofluorescent cells (10 to 22%). These results were confirmed with the radiolabeled antibody assay. Patients with active E-ALL had cells bearing E-ALL antigen(s) in the peripheral blood and bone marrow, but the number of immunofluorescent cells was lower in blood. Cells reactive with anti-E-ALL serum did not react with thymus cells, blood lymphocytes, remission bone marrow cells, Raji cells, PWM and PHA-induced blasts and CLL cells bearing mIg (uk). These data suggest that the antigen detected on E-ALL blasts by anti-E-ALL serum is neither a HLA-related nor a cell differentiation antigen. Thus, by using antiserum to E+ALL blasts, we have confirmed the presence of a T cell-specific antigen(s) on E+ALL cells. This antiserum did not recognize other leukemia-associated antigens common to E+ and E-ALL. We have also demonstrated an antigen(s) which is regularly expressed on E-ALL blasts and is either not detectable or is present in a lower proportion of E+ALL blasts.  相似文献   

4.
We have recently reported that the disialoganglioside GD3 is found in cellular lipid extracts of T-cell acute lymphoblastic malignancies (T-ALL) but is not detectable by resorcinol staining in extracts of non-T acute lymphoblastic leukemia blasts (non-T-ALL). We have now extended this study to assess the detectability of GD3 in T-ALL vs non-T-ALL utilizing an anti-GD3 antibody, R24. Gangliosides isolated from T-ALL and non-T-ALL blasts by two different methods were separated by thin-layer chromatography and stained with anti-GD3 and a control antibody specific for GM3 and sialosylparagloboside (SPG). Anti-GD3 reactivity was observed in extracts from T-ALL cells in all cases, whereas GD3 was not detected in any of the non-T-ALL samples. The anti-GM3/SPG antibody stained GM3 in all of the leukemic samples analyzed as well as SPG in the non-T-ALL samples. Indirect immunofluorescence was used to assess the expression of GD3 at the surface of leukemic blasts. Fluorescence-activated cell sorting analysis with R24 showed that whereas T-ALL blasts were highly reactive with this antibody, non-T-ALL blasts were totally unreactive. In an analysis of a larger number of leukemia patients by fluorescence microscopy, 20 out of 28 samples with the T-ALL phenotype were positive for R24, whereas zero out of 11 non-T-ALL samples were reactive. These results confirm our earlier finding of the specificity of GD3 to the T-ALL subclass of childhood leukemias and furthermore suggest the potential value of anti-GD3 as an immunological tool for the diagnosis and therapy of T-cell ALL.  相似文献   

5.
The specific binding of radioiodinated rIL-2 to fresh marrow blasts from T-lineage acute lymphoblastic leukemia (ALL) patients was initially investigated. The estimated number of radioiodinated rIL-2 molecules bound per blast ranged from undetectable to 1948. In colony assays, 72% of 32 cases analyzed showed a significant proliferative response to rIL-2, which depended on PHA-stimulated lymphocyte conditioned medium activation. Colony stimulation indices correlated with the number of radioiodinated rIL-2 molecules bound per blast but not with expression of CD25/Tac Ag on fresh marrow blasts or primary colony blasts. These findings provide evidence that in T-lineage ALL functional IL-2R proteins are expressed on leukemic progenitor blasts which may be distinct from Tac Ag. We used the mAb 35.1, T101, and G3.7 to test for expression of CD2, CD5, and CD7 on fresh marrow blasts from 126 T-lineage ALL patients. CD2, CD5, and CD7 were expressed in 84%, 93%, and 99% of cases, respectively. Furthermore, colony blasts that represent the early progeny of leukemic progenitor blasts were also CD2+CD5+CD7+. Ricin conjugates of 35.1, T101, and G3.7 mAb were used as Ag-specific cytotoxic probes to test for expression of CD2, CD5, and CD7 at the level of T-lineage leukemic progenitor blasts. Each immunotoxin was able to selectively eliminate greater than 99% of leukemic progenitor blasts, providing unique and direct evidence that these cells co-express CD2, CD5, and CD7. Neither mixtures of anti-CD5 and anti-CD7 nor anti-CD2, anti-CD5, and anti-CD7 immunotoxins were more effective against blast progenitor cells than the individual immunotoxins alone, confirming that CD2, CD5, and CD7 are not expressed on non-overlapping progenitor cell subpopulations.  相似文献   

6.
Summary Ten patients with acute lymphoblastic leukemia (ALL) were studied to determine the ability of their remission lymphocytes to kill autologous leukemic blasts (ALB) following in vitro exposure to soluble extracts (SE) of BCG, Staphylococcus aureus (SA) or Listeria monocytogenes (LM). Remission lymphocytes from some patients became markedly cytotoxic to ALB after stimulation with BCG-SE, LM-SE, or SA-SE. These bacterially stimulated lymphocytes, although specifically lytic for ALB, were usually not cytotoxic to autologous remission lymphocytes. Bacterial extracts were able to generate killer lymphocytes at low concentrations. Generally, large amounts either had no stimulatant effect or were less stimulating. Bacteria-stimulated lymphocytes of ALL patients were cytotoxic not only to their leukemia cells, but also to leukemia cells from ALL and AML patients who were allogeneic to stimulated lymphocytes.  相似文献   

7.
Leukemic cells from 32 patients were examined by using conventional immunological markers (E and EAC rosettes, surface immunoglobulins). Additionally, the test for intracytoplasmic IgM, Fc IgG receptor and the presence of light chains were performed. Leukemic blasts of all patients were investigated according to morphological and cytochemical criteria. Lymphoblasts from 3 patients had pre-B cell phenotype: cIgM +, sIg-. Each of 3 patients with pre-B cell characteristics had different diagnosis and different morphological and cytochemical features of the leukemic cells (ALL, NHL and CML). In 24 ALL cases the diagnosis of non-T, non-B ALL, in 4 cases T-ALL and in one B-ALL was established. The correlation of cytochemical results with special reference to acid phosphatase and immunological subclasses of ALL was also analyzed. An important question is raised with regard to diagnostic classification and treatment by finding ALL phenotypes in lymphoproliferative disorders that are not diagnosed as ALL.  相似文献   

8.
Lymphokine-activated killer cells (LAK) were originally distinguished from natural killers (NK) and cytotoxic T lymphocytes. Recently, however, IL 2-activated NK cells were suggested as the major source of LAK reactivity in human peripheral blood (PBL). Because certain T cell acute lymphoblastic leukemia (T-ALL) cells are phenotypically similar to LAK precursors, we have asked whether these leukemic cells can be induced toward LAK-cytotoxicity and express NK reactivity before stimulation. Five out of seven T-ALL preparations were induced by IL 2 to kill target cells. The cytotoxicity of the leukemic-LAK cells resembled that of normal LAK effectors as they lysed efficiently the NK-resistant target Daudi, as well as fresh human sarcoma, carcinoma, and renal cancer cells but not normal PBL. The ALL-LAK precursors phenotype was T3-, T4-, T8-, and T11+, similar to most normal LAK precursors. In contrast to normal PBL that generated LAK effectors when their proliferation was inhibited, the irradiated, nonproliferating T-ALL leukemic cells did not respond to IL 2. Therefore, the T-ALL LAK cytotoxicity was attributed to the leukemic cells rather than to residual normal lymphocytes. The IL 2-responding T-ALL cells did not express autonomous NK type cytotoxicity, suggesting that they reflect LAK precursors of non-NK origin. The homogeneous leukemic preparations with inducible LAK cytotoxicity described herein provide a model system for studying normal LAK cells.  相似文献   

9.
Prostaglandins E (PGE) and F2 alpha (PGF2 alpha) were measured in lymphocytes of normal subjects, children with acute lymphocytic leukemia (ALL), and adults with chronic lymphocytic leukemia (CLL). In ALL lymphocytes PGE increased from a normal value of 25 pgrams to 270 pgrams/10(6) cells, and PGF 2 alpha increased from a normal value of 31 pgrams to 482 pgrams/10(6) cells. In CLL lymphocytes, levels of PGE and PGF2 alpha were normal or low. When normal lymphocytes were stimulated with phytohemagglutinin (PHA), the level of PGE and PGF2 alpha fluctuated, followed by corresponding changes in the level of cyclic nucleotides. In cultured ALL lymphocytes, the level of PGE remained high, while cyclic 3':5'-adenosine monophosphate (c-AMP) level was constantly low, and the initial level of PGF2 alpha fluctuated in relation to similar oscillations of cyclic 3':5'-guanosine monophosphate (c-GMP). These values were lower, although not significantly, when ALL lymphocytes were stimulated with PHA. When CLL lymphocytes were stimulated with PHA, the level of PGE remained low (20 pgrams), as did that of c-AMP. The level of PGF2 alpha, after a brief initial increase (130 pgrams), returned to and remained at a lower level (60 pgrams) while the level of c-GMP was persistently high. These results suggest: (1) prostaglandins may indirectly influence the cell cycle, possibly through modulation of cyclase activity and levels of cyclic nucleotides; and (2) some derangement of this regulatory mechanism may be present in leukemic lymphocytes.  相似文献   

10.
Prostaglandins E (PGE) and F2 (PGF2) were measured in lymphocytes of normal subjects, children with acute lymphocytic leukemia (ALL), and adults with chronic lymphocytic leukemia (CLL). In ALL lymphocytes PGE increased from a normal value of 25 pgrams to 270 pgrams/106 cells, and PGF2 increased from a normal value of 31 pgrams to 482 pgrams/106 cells. In CLL lymphocytes, levels of PGE and PGF2 were normal or low. When normal lymphocytes were stimulated with phytohemagglutinin (PHA), the level of PGE and PGF2 fluctuated, followed by corresponding changes in the level of cyclic nucleotides. In cultured ALL lymphocytes, the level of PGE remained high, while cyclic 3′:5′-adenosine monophosphate (c-AMP) level was constantly low, and the initial high level of PGF2 fluctuated in relation to similar oscillations of cyclic 3′:5′-guanosine monophosphate (c-GMP). These values were lower, although not significantly, when ALL lymphocytes were stimulated with PHA. When CLL lymphocytes were stimulated with PHA, the level of PGE remained low (20 pgrams), as did that of c-AMP. The level of PGF2, after a brief initial increase (130 pgrams), returned to and remained at a lower level (60 pgrams) while the level of c-GMP was persistently high. These results suggest: (1) prostaglandins may indirectly influence the cell cycle, possibly through modulation of cyclase activity and levels of cyclic nucleotides; and (2) some derangement of this regulatory mechanism may be present in leukemic lymphocytes.  相似文献   

11.
Summary Cryopreserved leukaemic blasts and remission non-T cells from 22 patients with acute leukaemia (15 lymphocytic, 7 non-lymphocytic) were tested as stimulators of autologous remission T cells and normal allogeneic T cells in primary and secondary MLC. In most cases the autologous response elicited by leukaemic cells was less than or equal to that elicited by remission non-T cells. However, T cells from 2 patients in long-standing first remission from ANLL displayed greater proliferation in response to leukaemic blasts than to remission non-T cells in both primary and secondary MLC. The results are suggestive of sensitization of these 2 patients to leukaemia-specific antigens, but other possible explanations are discussed. Abbreviations used: MLC, mixed leucocyte culture; ANLL, acute non-lymphocytic leukaemia; ALL, acute lymphoblastic leukaemia; AMLR, autologous mixed lymphocyte reaction; NK cells, natural killer cells; MNC, mononuclear cells  相似文献   

12.
In a comprehensive study of 30 leukemia patients, it was found that a measurable fraction of fresh leukemic blasts from 8 of 8 adult patients with chronic myelogenous leukemia (CML) in blast crisis and 10 of 11 pediatric patients with childhood acute lymphocytic leukemia (ALL) were efficiently lysed by human peripheral blood natural killer (NK) cells as measured in 4-hour chromium release assays. The observed lysis of these fresh, noncultured, neoplastic blasts was mediated by a population of interferon-augmentable, FcR-positive, non-adherent large granular lymphoid cells from normal donors, which were also able to kill the 'standard' NK target K562. It was of further interest that all 8 of the patients with blast crisis CML exhibited myeloid type morphology. Furthermore, neoplastic lymphoblasts from 9 of 10 patients with NK-susceptible childhood ALL lacked easily detectable B or T cell markers and were of 'null' cell type. In marked contrast to the lytic susceptibility of fresh leukemic blasts from patients with ALL and CML in blast crisis, fresh neoplastic granulocytes from 5 patients with chronic phase CML (2 of which eventually progressed to myeloid type blast crisis), as well as leukemic blasts from 8 patients with acute myeloid leukemias (AML, AMMoL, and AMoL) were resistant to lysis as mediated by human NK cells from normal donors. The clinical implications of these findings are discussed.  相似文献   

13.
A D Ho  W Fiehn  W Hunstein 《Blut》1984,49(1):19-28
Plasma and intracellular levels of lactate dehydrogenase (LDH), phosphohexose isomerase (PHI) and lysozyme activities were investigated in 20 patients with acute myelocytic leukemia (AML), 18 patients with acute lymphatic leukemia (ALL) and 10 patients with chronic myelocytic leukemia in blast transformation (CML/BT). Though the plasma levels of LDH and PHI in all patients with acute leukemia were elevated as compared to control persons there was no distinctive pattern which could be of use in the classification of acute leukemia. On the other hand the intracellular levels of these enzymes could be of value in classifying acute leukemia. The leukemic lymphoblasts were characterized by low levels of PHI and lysozyme as compared to leukemic myeloblasts or to normal lymphocytes (p less than 0.01). The LDH/PHI ratio is also significantly higher in leukemic lymphoblasts than in leukemic myeloblasts or in normal lymphocytes (p always less than 0.01). These characteristics might also be made use of in identifying the blasts of CML/BT als "lymphoid" or "myeloid" in corresponding cases.  相似文献   

14.
The presence of glucocorticoid receptors on the leukemic cells of 33 patients affected with acute lymphatic leukemia (ALL) and 6 patients affected with acute myeloic leukemia (AML) was investigated by dexamethasone-induced cytolysis and [3H] dexamethasone binding. The tests undertaken proved that after 20 hours of incubation 9 of 26 non-T-non-B-ALL (c-ALL and unclassified ALL) and 2 of AML were lysed with dexamethasone; blood lymphocytes and bone marrow leukocytes of healthy donors, however, were not affected. Non-T-non-B-ALL and AML were able to bind essentially more [3H] dexamethasone than T-ALL. There existed no correlation between dexamethasone binding and dexamethasone-induced cytolysis.  相似文献   

15.
Galactose oxidase stimulated normal and leukemic lymphocytes to undergo DNA synthesis and cell division. Although the response of normal lymphocytes to galactose oxidase was enhanced with neuraminidase pretreatment, substantial activation of leukemic lymphocytes required pretreatment with neuraminidase. Leukemic lymphocytes exhibited maximal response to neuraminidase-galactose oxidase later than that observed in normal lymphocytes. Treatment of lymphocytes with trypsin diminished their response to galactose oxidase. When lymphocytes were pretreated with β-galactosidase to specifically remove cell surface galactosyl residues, the response to galactose oxidase was prevented. The response of normal and leukemic lymphocytes to sodium periodate was also reduced after treatment with galactose oxidase. These data support the concept that oxidation of cell surface galactosyl residues is critical during lymphocyte activation.  相似文献   

16.
T lymphocyte secretion of interleukin-13 (IL-13) in response to different activation signals was characterized in vitro. IL-13 release was investigated when virus transformed B lymphocytes or acute myelogenous leukaemia (AML) blasts were used as accessory cells during T cell activation. First, a majority of both CD4+ and CD8+ TCRαβ+ T lymphocyte clones, derived from normal individuals and bone marrow transplant recipients, secreted IL-13 in response to a standardized mitogenic activation signal (phytohaemagglutinin+IL-2+ B lymphocyte accessory cells). The CD4+ cells showed significantly higher IL-13 levels than the CD8+ subsets. Second, when leukaemic accessory cells (more than 95% AML blasts) were used during T cell activation, IL-13 was released both during alloactivation of normal T lymphocytes and during mitogen activation of posttransplant T cells. Third, when normal T lymphocytes were stimulated with allogeneic AML blasts, addition of IL-13-neutralizing monoclonal antibodies decreased interferon γ levels. Although addition of IL-13-neutralizing antibodies did not alter granulocyte-colony-stimulating factor secretion by allostimulating AML blasts, altered blast proliferation was detected for certain patients. Thus, most T cell clones can release IL-13, and IL-13 can modulate cytokine responses during T cell recognition of allogeneic AML cells. Received: 24 April 1997 / Accepted: 24 July 1997  相似文献   

17.
Two metastasis associated proteins, CD44v6 and NM23-H1, are expressed by normal lymphoid cells, the former serving as activation marker and the later as a constitutive protein. CD44v6 is considered as a marker of poor prognosis of various hematological cancers but its expression was not demonstrated in childhood acute lymphoblastic leukemia (ALL). On the other hand, NM23-H1 is considered as a differentiation inhibitory factor in various hematological cancers and as a marker of poor prognosis. Therefore we have analyzed the expression of CD44v6 and NM23-H1 in bone marrow of sixteen pediatric ALL patients using immunocytochemistry. For the first time, we have demonstrated the expression of CD44v6 protein epitopes on leukemic cells in a proportion of ALL cases (6/16), primarily in the medium/high risk group (except one case), suggesting a possible association to an unfavorable outcome. On the other hand, NM23-H1 protein expression was maintained in leukemic cells in 50% of both low and medium/high risk ALL cases. The majority of the pediatric ALL cases expressed only one of the metastasis associated proteins (10/16). This feature is highly similar to the observations made in several adult solid cancers. The potential of CD44v6 expression in leukemic cells as prognosticator in pediatric ALL has to be evaluated in a larger clinical trial.  相似文献   

18.
The response of leukemic cells from AKR/J mice to phytohemagglutinin (PHA) was compared with that of normal lymphocytes. PHA stimulated first cholesterol synthesis and then DNA synthesis in both lymphocytes and leukemic cells. The neoplastic cells were, however, much more sensitive to PHA, requiring less time and a lower concentration of the lectin for optimum stimulation as compared to lymphocytes. In fact, the amount of PHA which was required to activate lymphocytes to proliferate, as measured by increases in sterol and DNA synthesis, was inhibitory to leukemic cells. The basal level of cholesterol synthesis and the induction of cholesterol synthesis following PHA activation were depressed in lymphocytes and leukemic cells by treatment with 25-hydroxycholesterol and 7-ketocholesterol. These two oxygenated derivatives of cholesterol are known to be potent and specific inhibitors of sterol synthesis. Blockage of sterol synthesis by these reagents also abolished PHA-activated DNA synthesis in lymphocytes and leukemic cells. The results support the hypothesis that the synthesis of cholesterol is an important event leading to cell proliferation.  相似文献   

19.
Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.  相似文献   

20.
CBA spleen T lymphocytes were stimulated by the T mitogens concanavalin-A (Con-A), phytohemagglutinin (PHA), and leukoagglutinin (LA). On the 2nd to 3rd culture day the activated cells (blasts) were separated from the nonactivated cells (lymphocytes) by 1g velocity sedimentation. The lymphocytes which were not activated during the primary culture (lymphocyte fraction from the velocity sedimentation) were then stimulated by the same mitogens or in one-way MLC to DBA/2 m, and tested for relevant target lysis after MLC stimulation. Primary stimulation with Con-A abolished the responses to Con-A, to PHA, and to LA, whereas primary stimulation with PHA or with LA abolished the responses to these mitogens but left behind a considerable Con-A response. Stimulation with any one of the listed T mitogens did not significantly affect the MLC responses. While primary stimulation with Con-A abolished the relevant target cell lysis after MLC stimulation, primary stimulation with PHA or with LA reduced it only slightly. Assuming that the various mitogens stimulate separate subpopulations of T cells, the results seem to indicate that the Con-A-responsive population includes the PHA- and LA-responsive populations but not the MLC-responsive population. It also appears that the T cells generated to killer cells during MLC are mainly confined to the concanavalin-responsive population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号