首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The 130-kDa smooth muscle myosin light chain kinase (smMLCK) is a Ca2+/CaM-regulated enzyme that plays a pivotal role in the initiation of smooth muscle contraction and regulation of cellular migration and division. Despite the critical importance of smMLCK in these processes, little is known about the mechanisms regulating its expression. In this study, we have identified the proximal promoter of smMLCK within an intron of the mouse mylk gene. The mylk gene encodes at least two isoforms of MLCK (130 and 220 kDa) and telokin. Luciferase reporter gene assays demonstrated that a 282-bp fragment (-167 to +115) of the smMLCK promoter was sufficient for maximum activity in A10 smooth muscle cells and 10T1/2 fibroblasts. Deletion of the 16 bp between -167 and -151, which included a CArG box, resulted in a nearly complete loss of promoter activity. Gel mobility shift assays and chromatin immunoprecipitation assays demonstrated that serum response factor (SRF) binds to this CArG box both in vitro and in vivo. SRF knockdown by short hairpin RNA decreased endogenous smMLCK expression in A10 cells. Although the SRF coactivator myocardin induced smMLCK expression in 10T1/2 cells, myocardin activated the promoter only two- to fourfold in reporter gene assays. Addition of either intron 1 or 6 kb of the 5' upstream sequence did not lead to any further activation of the promoter by myocardin. The proximal smMLCK promoter also contains a consensus GATA-binding site that bound GATA-6. GATA-6 binding to this site decreased endogenous smMLCK expression, inhibited promoter activity in smooth muscle cells, and blocked the ability of myocardin to induce smMLCK expression. Altogether, these data suggest that SRF and SRF-associated factors play a key role in regulating the expression of smMLCK.  相似文献   

2.
3.
Naturally occurring repeat sequences capable of adopting H-DNA structures are abundant in promoters of disease-related genes. In support of this, we found (CT)22 · (AG)22 repeats in the promoter of smooth muscle myosin light chain kinase (smMLCK), a key regulator of vascular smooth muscle function. We also found an insertion mutation that adds another six pairs of CT · AG repeats and increases smMLCK promoter activity in spontaneously hypertensive rats (SHR). Therefore, we used the smMLCK promoters from normotensive and hypertensive rats as a model system to determine how CT · AG repeats form H-DNA, an intramolecular triplex, and regulate promoter activity. High-resolution mapping with a chemical probe selective for H-DNA showed that the CT · AG repeats adopt H-DNA structures at a neutral pH. Importantly, the SHR promoter forms longer H-DNA structures than the promoter from normotensive rats. Reconstituting nucleosomes on the promoters, in vitro, showed no difference in nucleosome positioning between the two promoters. However, chromatin immunoprecipitation analyses revealed that histone acetylations are greater in the hypertensive promoter. Thus, our findings suggest that the extended CT · AG repeats in the SHR promoter increase H-DNA structures, histone modifications, and promoter activity of the smMLCK, perhaps contributing to vascular disorders in hypertension.  相似文献   

4.
Exposure of vascular smooth muscle cells to arginine vasopressin (AVP) increases smooth muscle alpha-actin (SM-alpha-actin) expression through activation of the SM- alpha-actin promoter. The goal of this study was to determine the role of the mitogen-activated protein kinase (MAP kinase) family in regulation of SM-alpha-actin expression. AVP activated all three MAP kinase family members: ERKs, JNKs, and p38 MAP kinase. Inhibition of JNKs or p38 decreased AVP-stimulated SM-alpha-actin promoter activity, whereas inhibition of ERKs had no effect. A 150-base pair region of the promoter containing two CArG boxes was sufficient to mediate regulation by vasoconstrictors. Mutations in either CArG box decreased AVP-stimulated promoter activity. Electrophoretic mobility shift assays using oligonucleotides corresponding to either CArG box resulted in a complex of similar mobility whose intensity was increased by AVP. Antibodies against serum response factor (SRF) completely super-shifted this complex, indicating that SRF binds to both CArG boxes. Overexpression of SRF increased basal promoter activity, but activity was still stimulated by AVP. AVP stimulation rapidly increased SRF phosphorylation. These data indicate that both JNKs and p38 participate in regulation of SM- alpha-actin expression. SRF, which binds to two critical CArG boxes in the promoter, represents a potential target of these kinases.  相似文献   

5.
The desmin gene encodes an intermediate filament protein that is present in skeletal, cardiac, and smooth muscle cells. This study shows that the 4-kb upstream region of the murine desmin promoter directs expression of a lacZ reporter gene throughout the heart from E7.5 and in skeletal muscle and vascular smooth muscle cells from E9. 5. The distal fragment (-4005/-2495) is active in arterial smooth muscle cells but not in venous smooth muscle cells or in the heart in vivo. It contains a CArG/octamer overlapping element (designated CArG4) that can bind the serum response factor (SRF) and an Oct-like factor. The desmin distal fragment can replace a SM22alpha regulatory region (-445/-126) that contains two CArG boxes, to cis-activate a minimal (-125/+65) SM22alpha promoter fragment in arterial smooth muscle cells of transgenic embryos. lacZ expression was abolished when mutations were introduced into the desmin CArG4 element that abolished the binding of SRF and/or Oct-like factor. These data suggest that a new type of combined CArG/octamer element plays a prominent role in the regulation of the desmin gene in arterial smooth muscle cells, and SRF and Oct-like factor could cooperate to drive specific expression in these cells.  相似文献   

6.
7.
8.
9.
10.
During vertebrate embryonic development, cardiac and skeletal muscle originates from distinct precursor populations. Despite the profound structural and functional differences in the striated muscle tissue they eventually form, such progenitors share many features such as components of contractile apparatus. In vertebrate embryos, the alpha-cardiac actin gene encodes a major component of the myofibril in both skeletal and cardiac muscle. Here, we show that expression of Xenopus cardiac alpha-actin in the myotomes and developing heart tube of the tadpole requires distinct enhancers within its proximal promoter. Using transgenic embryos, we find that mutations in the promoter-proximal CArG box and 5 bp downstream of it specifically eliminate expression of a GFP transgene within the developing heart, while high levels of expression in somitic muscle are maintained. This sequence is insufficient on its own to limit expression solely to the myocardium, such restriction requiring multiple elements within the proximal promoter. Two additional enhancers are active in skeletal muscle of the embryo, either one of which has to interact with the proximal CArG box for correct expression to be established. Transgenic reporters containing multimerised copies of CArG box 1 faithfully detect most sites of SRF expression in the developing embryo as do equivalent reporters containing the SRF binding site from the c-fos promoter. Significantly, while these motifs possess a different A/T core within the CC(A/T)(6)GG consensus and show no similarity in flanking sequence, each can interact with a myotome-specific distal enhancer of cardiac alpha-actin promoter, to confer appropriate cardiac alpha-actin-specific regulation of transgene expression. Together, these results suggest that the role of CArG box 1 in the cardiac alpha-actin gene promoter is to act solely as a high-affinity SRF binding site.  相似文献   

11.
12.
13.
The mouse myosin light-chain 1A (MLC1A) gene, expressed in the atria of the adult heart, is one of the first muscle genes to be activated when skeletal as well as cardiac muscles form in the embryo. It is also transcribed in skeletal muscle cell lines at the onset of differentiation. Transient transfection assays of mouse skeletal muscle cell lines with DNA constructs containing MLC1A promoter fragments fused to the chloramphenicol acetyltransferase (CAT) gene show that the first 630 bp of the promoter is sufficient to direct expression of the reporter gene during myotube formation. Two E boxes located at bp -76 and -519 are necessary for this regulation. MyoD and myogenin proteins bind to them as heterodimers with E12 protein and, moreover, transactivate them in cotransfection experiments with the MLC1A promoter in nonmuscle cells. Interestingly, the effect of mutating each E box is less striking in primary cultures than in the C2 or Sol8 muscle cell line. A DNA fragment from bp -36 to -597 confers tissue- and stage-specific activity to the herpes simplex virus thymidine kinase promoter in both orientations, showing that the skeletal muscle-specific regulation of the MLC1A gene is under the control of a muscle-specific enhancer which extends into the proximal promoter region. At bp -89 is a diverged CArG box, CC(A/T)6AG, which binds the serum response factor (SRF) in myotube nuclear extracts, as does the wild-type sequence, CC(A/T)6GG. Both types of CArG box also bind a novel myotube-enriched complex which has contact points with the AT-rich part of the CArG box and adjacent 3' nucleotides. Mutations within the CArG box distinguish between the binding of this complex and binding of SRF; only SRF binding is directly involved in the specific regulation of the MLC1A gene in skeletal muscle cell lines.  相似文献   

14.
The CArG box is an essential promoter sequence for cardiac muscle actin gene expression in Xenopus embryos. To assess the role of the CArG motif in promoter function during Xenopus development, the DNA-binding activities present in the embryo that interact with this sequence have been investigated. A family of four Embryo CArG box1 Factors (ECFs) was separated by a 2-step fractionation procedure. These factors were distinct from the previously described C-ArG box binding activity Serum Response Factor (SRF). ECF1 was the most prominent binding activity in cardiac actin-expressing tissues, and bound the CArG box in preference to a Serum Response Element (SRE). SRF was also detectable in muscle, but it bound preferentially to an SRE. The properties of ECF3 were similar to those of ECF1, but it was much less prominent in cardiac actin-expressing tissues. The properties of the two other factors were distinctive: ECF2 was of relatively low affinity and high abundance, whilst ECF4 bound non-specifically to ends of DNA. The binding activity (or activities) that interacted with the CArG box was found to be influenced by both the concentrations of the other CArG box binding activities and the sequence of the site. Although there was no evidence for a muscle-specific CArG box binding activity, the properties of ECF1 suggest that it could play a role in the expression of the cardiac actin gene during Xenopus development.  相似文献   

15.
16.
17.
Understanding the mechanism of smooth muscle cell (SMC) differentiation will provide the foundation for elucidating SMC-related diseases, such as atherosclerosis, restenosis, and asthma. In the current study, overexpression of Elk-1 in SMCs down-regulated expression of several endogenous smooth muscle-restricted proteins, including telokin, SM22α, and smooth muscle α-actin. In contrast, down-regulation of endogenous Elk-1 in smooth muscle cells increased the expression of only telokin and SM22α, suggesting that smooth muscle-specific promoters are differentially sensitive to the inhibitory effects of Elk-1. Consistent with this, overexpression of the DNA binding domain of Elk-1, which acts as a dominant-negative protein by displacing endogenous Elk-1, enhanced the expression of telokin and SM22α without affecting expression of smooth muscle α-actin. Elk-1 suppressed the activity of smooth muscle-restricted promoters, including the telokin promoter that does not contain a consensus Elk-1 binding site, through its ability to block myocardin-induced activation of the promoters. Gel mobility shift and chromatin immunoprecipitation assays revealed that Elk-1 binds to a nonconsensus binding site in the telokin promoter and Elk-1 binding is dependent on serum response factor (SRF) binding to a nearby CArG box. Although overexpression of the SRF-binding B-box domain of Elk-1 is sufficient to repress the myocardin activation of the telokin promoter, this repression is not as complete as that seen with an Elk-1 fragment that includes the DNA binding domain. In addition, reporter gene assays demonstrate that an intact Elk-1 binding site in the telokin promoter is required for Elk-1 to maximally inhibit promoter activity. Together, these data suggest that the differential sensitivity of smooth muscle-specific genes to inhibition by Elk-1 may play a role in the complex changes in smooth muscle-specific protein expression that are observed under pathological conditions.  相似文献   

18.
19.
Expression of alpha-actin in smooth muscle cells (SMCs) is regulated, in part, by an intronic serum response factor (SRF)-binding CArG element. We have identified a conserved nuclear factor of activated T cells (NFAT) binding site that overlaps this CArG box and tested the hypothesis that this site plays a previously unrecognized role in regulating alpha-actin expression. A reporter construct prepared using a 56-bp region of the mouse alpha-actin first intron containing SRF, NFAT, and AP-1 sites (SNAP) acted as an enhancer element in the context of a minimal thymidine kinase promoter. Basal reporter activity following expression in SMCs was robust and sensitive to the calcineurin-NFAT pathway inhibitors cyclosporin A and FK506. Mutating either the NFAT or SRF binding site essentially abolished reporter activity, suggesting that both NFAT and SRF binding are required. Basal activity in non-smooth muscle HEK293 cells was SRF-dependent but NFAT-independent and approximately 8-fold lower than that in SMCs. Activation of NFAT in HEK293 cells induced an approximately 4-fold increase in activity that was dependent on the integrity of both NFAT and SRF binding sites. NFATc3.SRF complex formation, demonstrated by co-immunoprecipitation, was facilitated by the presence of SNAP oligonucleotide. Inhibition of the calcineurin-NFAT pathway decreased alpha-actin expression in cultured SMCs, suggesting that the molecular interaction of NFAT and SRF at SNAP may be physiologically relevant. These data provide the first evidence that NFAT and SRF may interact to cooperatively regulate SMC-specific gene expression and support a role for NFAT in the phenotypic maintenance of smooth muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号