首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants in the Drosophila crooked neck (crn) gene show an embryonic lethal phenotype with severe developmental defects. The unusual crn protein consists of sixteen tandem repeats of the 34 amino acid tetratricopeptide (TPR) protein recognition domain. Crn-like TPR elements are found in several RNA processing proteins, although it is unknown how the TPR repeats or the crn protein contribute to Drosophila development. We have isolated a Saccharomyces cerevisiae gene, CLF1, that encodes a crooked neck-like factor. CLF1 is an essential gene but the lethal phenotype of a clf1::HIS3 chromosomal null mutant can be rescued by plasmid-based expression of CLF1 or the Drosophila crn open reading frame. Clf1p is required in vivo and in vitro for pre-mRNA 5' splice site cleavage. Extracts depleted of Clf1p arrest spliceosome assembly after U2 snRNP addition but prior to productive U4/U6.U5 association. Yeast two-hybrid analyses and in vitro binding studies show that Clf1p interacts specifically and differentially with the U1 snRNP-Prp40p protein and the yeast U2AF65 homolog, Mud2p. Intriguingly, Prp40p and Mud2p also bind the phylogenetically conserved branchpoint binding protein (BBP/SF1). Our results indicate that Clf1p acts as a scaffolding protein in spliceosome assembly and suggest that Clf1p may support the cross-intron bridge during the prespliceosome-to-spliceosome transition.  相似文献   

2.
Tetratricopeptide (TPR)-domain proteins are involved in various cellular processes. The TPR domain is known to be responsible for interaction with other proteins commonly recognizing sequence motifs at the C-termini. One such TPR-protein, TRIP8b, was originally identified in rat as an interaction partner of Rab8b, and its human orthologue as a protein related to the peroxisomal targeting signal 1 (PTS1) receptor Pex5p (Pex5Rp). Somewhat later, the mouse orthologue was reported to bind the hyperpolarization-activated, cyclic nucleotide-regulated HCN channels, and, very recently, the rat orthologue was shown to interact with latrophilin 1, the calcium-independent receptor of alpha-latrotoxin. Here we employed various methodological approaches to investigate and compare the binding specificities of the human PTS1 receptor Pex5p and the related protein Pex5Rp/TRIP8b towards a subset of targets, including Rab8b and various C-termini resembling PTS1. The results show that the TPR domains of Pex5p and Pex5Rp/TRIP8b have distinct but overlapping substrate specificities. This suggests that selectivity in the recognition of substrates by the TPR domains of Pex5p and Pex5Rp/TRIP8b is a matter of considerable complexity, and that no single determinant appears to be sufficient in unambiguously defining a binding target for either protein. This idea is further corroborated by our observations that changes in the surrounding residues or the conformational state of one of the binding partners can profoundly alter their binding activities. The implications of these findings for the possible peroxisome-related functions of Pex5Rp/TRIP8b are discussed.  相似文献   

3.
The behavior of cells is generally considered to be regulated by environmental factors, but the molecules in the milieu of neural stem cells have been little studied. We found by immunohistochemistry that chondroitin sulfate (CS) existed in the surroundings of nestin-positive cells or neural stem/progenitor cells in the rat ventricular zone of the telencephalon at embryonic day 14. Brain-specific chondroitin sulfate proteoglycans (CSPGs), including neurocan, phosphacan/receptor-type protein-tyrosine phosphatase beta, and neuroglycan C, were detected in the ventricular zone. Neurospheres formed by cells from the fetal telencephalon also expressed these CSPGs and NG2 proteoglycan. To examine the structural features and functions of CS polysaccharides in the milieu of neural stem cells, we isolated and purified CS from embryonic day 14 telencephalons. The CS preparation consisted of two fractions differing in size and extent of sulfation: small CS polysaccharides with low sulfation and large CS polysaccharides with high sulfation. Interestingly, both CS polysaccharides and commercial preparations of dermatan sulfate CS-B and an E-type of highly sulfated CS promoted the fibroblast growth factor-2-mediated proliferation of neural stem/progenitor cells. None of these CS preparations promoted the epidermal growth factor-mediated neural stem cell proliferation. These results suggest that these CSPGs are involved in the proliferation of neural stem cells as a group of cell microenvironmental factors.  相似文献   

4.
Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington’s disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.  相似文献   

5.
6.
7.
Behavior and Differentiation of the Neural Stem Cells in vivo   总被引:4,自引:0,他引:4  
We studied the behavior and differentiation of human and rat neural stem cells after transplantation in the adult rat brain without immunosuppression. The rat stem cells were isolated from the presumptive neocortex of 15-day-old embryos. The human cells were isolated from the ventricular brain zone of 9-week-old embryos and cultivated for two weeks before transplantation. The results of histomorphological studies suggest that the microenvironment factors did not suppress the growth or development of transplanted stem cells. Both rat and human embryonic multipotent neural cells showed similar behavior and differentiation into neurons and glial cells. After transplantation, they continued to mitotically divide and migrated from the graft area to the surrounding tissue of a recipient brain. The presumptive glial cells migrated preferentially along the capillaries and fibrous structures of the recipient brain. Similar behavior of the rat and human neural stem cells in the microenvironment of the recipient adult rat brain and the absence of immune reaction suggest that the transplantation into the rat brain may serve as a model for studying the developmental biology of the human stem cells.  相似文献   

8.
Muto E  Tabata Y  Taneda T  Aoki Y  Muto A  Arai K  Watanabe S 《Biochimie》2004,86(8):523-531
We isolated Veph, a novel gene encoding a pleckstrin homology (PH) domain-containing protein from a mouse. Veph was strongly expressed in the embryonic brain, and its expression level gradually decreased in later stages. In situ hybridization analysis of sectioned embryo brains revealed that Veph was expressed exclusively in the ventricular zone. We then isolated a zebrafish orthologue of Veph (zVeph). As observed in the mouse gene, zVeph was expressed in the ventricular zone of developing brain and spinal cord. Blockage of zVeph expression by injection of zVeph-specific morpholino antisense oligo into zebrafish fertilized eggs resulted in a defect in the midbrain-hindbrain boundary and otic vesicle formation, suggesting the important function of zVeph in central nervous system (CNS) development. On the other hand, homozygous knockout mice of Veph showed no significant defect in the CNS, pointing to possible different functions of Veph between the zebrafish and mouse.  相似文献   

9.
A novel protein LUZP with 3 leucine zipper motifs at its amino terminus is predominantly expressed in the adult brain. A modified gene targeting approach was employed in an attempt to establish in vitro and in vivo models in which Luzp is knock-out (KO) for phenotype assessment and a reporter gene lacZ is knock-in (KI) for tracing its expression. We report in this study the molecular cloning of the Luzp gene, its targeting vector construction and Luzp-KO/lacZ-KI embryonic stem (ES) clone selection. Since LUZP is also expressed in ES cells, the possibility of embryonic lethality cannot be excluded when attempting to establish Luzp-null mutant mice. We have therefore examined the development of homozygous Luzp-KO/lacZ-KI clones in nude mice. Tissue types derived from all three embryonic germ layers were observed in teratomas developed in nude mice. In situ X-gal staining further revealed restricted expression of LUZP in neural lineage cells.  相似文献   

10.
The Drosophila crooked neck (crn) gene encodes an unusual TPR-containing protein whose function is essential for embryonic development. Homology with other TPR-proteins involved in cell cycle control, initially led to the proposal that Crn might play a critical role in regulation of embryonic cell divisions. Here, we show that Crn does not have a cell cycle function in the embryo. By using specific antibodies we also show that the Crn protein is a nuclear protein which localizes in "speckles" which could correspond to preferential localization of several other splicing factors. Fractionation of nuclear extracts on sucrose gradients revealed Crn in a 900 kDa multiproteic complex together with snRNPs, suggesting that Crn participates in the assembly of the splicing machinery in vivo.  相似文献   

11.
The Drosophila crooked neck (crn) gene is essential for embryogenesis and has been implicated in cell cycle progression and in pre-mRNA splicing although a direct role in either process has not been established. Here we report isolation of the human crooked neck homolog, HCRN, and provide evidence for its function in splicing. HCRN encodes an unusual protein composed largely of tetratricopeptide repeat (TPR) elements. The crooked neck protein co-localizes with the SR and Sm protein splicing factors in discrete subnuclear domains implicated in snRNP biogenesis. In vitro assembly experiments show that an 83 kDa hcrn isoform is stably recruited to splicing complexes coincident with the addition of the U4/U6.U5 tri-snRNP particle. Crooked neck activity appears essential as extracts depleted of hcrn fail to splice pre-mRNA. These and related data support the view that crooked neck is a phylogenetically conserved pre-mRNA splicing factor.  相似文献   

12.
In close vicinity of two fus nuclear genes (chloroplast-specific translation elongation factor cEF-G) of soybean (Glycine max) we localized a split nuclear gene coding for a protein with tetratricopeptide repeats (TPR). A full-length cDNA was sequenced (1871 nucleotides). It encodes a protein (569 amino acids) with high sequence identity to the yeast STI1 stress-inducible and the human transformation-sensitive IEF SSP 3521 protein which both carry TPR elements. The soybean gene is heat-inducible. This is the first evidence for the existence of plant genes coding for proteins which belong to the TPR family. We call the gene gmsti and the protein GMSTI in analogy to the yeast counterpart.  相似文献   

13.
14.
The ZKT gene from Arabidopsis encodes a polypeptide of 335 amino acid residues, with a calculated molecular mass of 37.4 kDa. ZKT is a member of a novel protein family present in the plant kingdom, which contains a PDZ, a K-box, and a TPR motif. A BLAST search indicated that the ZKT gene is a single gene in Arabidopsis and that ZKT homologs are present in soybean and rice but not in animals. The level of ZKT mRNA decreased after wounding. Antisera from rabbit immunized with recommbinant ZKT protein recognized a protein of 37 kDa in Arabidopsis. Western analysis with anti-ZKT antibody indicated that the level of ZKT protein does not change after wounding. The ZKT protein has consensus sequence motifs for phosphorylation. Immunoprecipitation with anti-ZKT antibody and western analysis with anti-phosphoamino acid antibody indicated that the ZKT protein is phosophorylated at the threonine and serine residues after wounding. These results suggest that the ZKT protein may act as a molecular adaptor regulated by phosphorylation in wound responses.  相似文献   

15.
16.
Usher syndrome type IIA (MIM: 27601) is an autosomal recessive disorder characterized by moderate to severe congenital deafness and progressive retinitis pigmentosa. We recently identified the human Usher syndrome type IIA gene (USH2A) on chromosome 1q41, which encodes a protein possessing 10 laminin epidermal growth factor and four fibronectin type 3 domains, both commonly observed in extracellular matrix proteins. To gain insight into the pathogenesis of Usher syndrome type IIA, we isolated and characterized the murine (Ush2a) and rat (rat Ush2a) orthologs of human USH2A. We mapped mouse Ush2a by fluorescence in situ hybridization to mouse chromosome 1 in the region syntenic to human chromosome 1q41. Rat Ush2a has been localized by radiation hybrid mapping to rat chromosome 13 between d13rat49 and d13rat76. The mouse and rat genes, similar to human USH2A, are expressed primarily in retina and cochlea. Mouse Ush2a encodes a 161-kDa protein that shows 68% identity and 9% similarity to the human USH2A protein. Rat Ush2a encodes a 167-kDa protein with 64% identity and 10% similarity to the human protein and 81% identity and 5% similarity to the mouse USH2A protein. The predicted amino acid sequence of the mouse and rat proteins, like their human counterpart, contains a leader sequence, an amino-terminal globular domain, 10 laminin epidermal growth factor domains, and four carboxy-terminal fibronectin type III motifs. With in situ hybridization, we compared the cellular expression of the USH2A gene in rat, mouse, and human retinas. USH2A mRNA in the adult rat, mouse, and human is expressed in the cells of the outer nuclear layer of the retina, one of the target tissues of the disease. In the developing rat retina, Ush2a mRNA expression appears in the neuroepithelium at embryonic day 17.  相似文献   

17.
18.
OsRRMh, a homologue of OsRRM, encodes a Spen-like protein, and is composed of two N-terminal RNA recognition motifs (RRM) and one C-terminal Spen paralogue and an orthologue C-terminal domain (SPOC). The gene has been found to be constitutively expressed in the root, stem, leaf, spikelet, and immature seed, and alternative splicing patterns were confirmed in different tissues, which may indicate diverse functions for OsRRMh. The OsRRMh dsRNAi lines exhibited late-flowering and a larger panicle phenotype. When full-length OsRRMh and/or its SPOC domain were overexpressed, the fertility rate and number of spikelets per panicle were both markedly reduced. Also, overexpression of OsRRMh in the Arabidopsis fpa mutant did not restore the normal flowering time, and it delayed flowering in Col plants. Therefore, we propose that OsRRMh may confer one of its functions in the vegetative-to-reproductive transition in rice (Oryza sativa L. subsp. japonica cv. Zhonghua No. 11 (ZH11)).  相似文献   

19.
20.
In a screen designed to identify genes expressed preferentially in retina, we identified a cDNA encoding the human ortholog of rat STXBP1 (n-Sec1, Munc-18-1, rbSec1), a protein implicated in vesicle trafficking and neurotransmitter release. This protein also has similarity toDrosophilaRop (64% aa identity) andCaenorhabditis elegansUNC-18 (58% aa identity). The major human cDNA encodes a protein of 594 amino acids which has 100% amino acid identity with its rat and murine counterparts. Additionally, there is an alternative splice form in humans, arising from the inclusion of an additional exon, which encodes a protein of 603 amino acids and is also 100% identical to the corresponding rat isoform. We found expression of the shorter cDNA in all tissues and cell lines we examined with highest levels in retina and cerebellum. By RT-PCR analysis, we found expression of the longer cDNA in neural tissues only. We mapped the structural gene to 9q34.1, a region without obvious candidate phenotypes. However, due to its evolutionary conservation and abundant expression in retina and brain, STXBP1 should be considered a candidate gene for retinal and/or neural disorders mapping to 9q34.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号