首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The laterophysic connection (LC) is an association between bilaterally paired, anterior swim bladder extensions (horns) and medial openings in the supracleithral lateral line canals that diagnoses butterflyfishes in the genus Chaetodon. It has been hypothesized that the LC makes the lateral line system sensitive to sound pressure stimuli that are transmitted by the swim bladder horns and converted to fluid flow into the lateral line system via a laterophysic tympanum. The purpose of this study was to define variation in the morphology of the LC, swim bladder and swim bladder horns among 41 Chaetodon species from all 11 Chaetodon subgenera and a species from each of four non-Chaetodon genera using gross dissection, histological analysis as well as 2D or 3D CT (computed tomographic) imaging of live, anesthetized fishes. Our results demonstrate that the lateral line system appears rather unspecialized with well-ossified narrow canals in all species examined. Two LC types (direct and indirect), defined by whether or not the paired anterior swim bladder horns are in direct contact with a medial opening in the supracleithral lateral line canal, are found among species examined. Two variants on a direct LC and four variants of an indirect LC are defined by combinations of soft tissue anatomy (horn length [long/short] and width [wide/narrow], number of swim bladder chambers [one/two], and presence/absence of mucoid connective tissue in the medial opening in the supracleithrum). The combination of features defining each LC variant is predicted to have functional consequences for the bioacoustics of the system. These findings are consistent with the recent discovery that Chaetodon produce sounds during social interactions. The data presented here provide the comparative morphological context for the functional analysis of this novel swim bladder-lateral line connection.  相似文献   

2.
The ontogeny of the ear, swim bladder and laterophysic connection was investigated in the spotfin butterflyfish, Chaetodon ocellatus in order to determine how the development of the laterophysic connection (a Chaetodon synapomorphy) is correlated with ontogenetic changes in the hearing capabilities in these abundant and ecologically important coral reef fishes. Histological and cleared and stained material revealed that the medial opening in the lateral line canal in the supracleithrum (which defines the laterophysic connection), an inflated physoclistous swim bladder, and the three otolithic organs are already present in the smallest individuals examined (7?C15?mm SL). The medial opening in the supracleithrum increases in size and the cylindrical swim bladder horns form after the loss of the head plates characteristic of the tholichthys stage, in individuals ??29?mm SL. The three sensory maculae of the ear increase in size, and the shape of the sacculus changes most dramatically with fish growth; hair cell density is highest in the utriculus. Physiological analysis of the reponse to sound pressure showed that larval and juvenile C. ocellatus had a hearing sensitivity peak at 100?C200?Hz, which was ~30?C40?dB more sensitive than that measured in larval coral reef fishes (e.g., damselfishes) that lack swim bladder horns. C. ocellatus did not show any ontogenetic changes in sensitivity to sound pressure, which may be explained by the fact that the growth of the swim bladder horns maintains the small distance between the swim bladder and ear that was established earlier during the larval stage. The timing of the development of the swim bladder horns suggests that if the laterophysic connection has a sensory acoustic function, its presence in individuals >29?mm SL suggests that its role is limited to post-settlement, reef-based behaviors.  相似文献   

3.
The higher‐level relationships of butterflyfishes were examined using 37 morphological characters. This analysis combines characters derived from a histological study describing variation in the morphology of the laterophysic connection (an association between the swim bladder and the lateral‐line canals) with previously described morphological characters. The phylogenetic analysis resulted in four equally parsimonious trees that only differed in the placement of two of the 11 chaetodontid genera (Amphichaetodon and Forcipiger). We compare our analysis with previous hypotheses, present a new taxonomy consistent with the proposed cladistic relationships, and diagnose Chaetodon with five unreversed synapomorphies, including the evolution of characters composing the laterophysic connection. A new character‐based diagnosis of Chaetodon is provided and species are allocated accordingly; Chaetodon now includes the former Parachaetodon ocellatus and excludes the former subgenera Prognathodes and Roa. The evolution of the laterophysic connection is examined by optimizing character‐state transformations on the new hypothesis of relationships.  相似文献   

4.
5.
The morphology and development of the multiple lateral line canals (canals 1–5 in dorsal to ventral sequence) on the trunk of two representative hexagrammids, Hexagrammos decagrammus and H. stelleri, were studied using histological and cleared and stained material. The morphology of the lateral line scales of which the lateral line canals are composed and the distribution of canal neuromasts within them were described quantitatively. We hypothesized that 1) one neuromast is contained in each lateral line scale and all five canals contain neuromasts, 2) all five canals develop similarly, and 3) the multiple trunk canals are an adaptation for the alteration of lateral line function. Lateral line scale morphology was found to be similar among the five canals in Hexagrammos decagrammus and H. stelleri. However, canal 3 is significantly wider than the other four canals. It is the only one of the five canals connected to the canals on the head, and more significantly, it is the only one of the five canals that contains neuromasts. The lateral line scales that comprise all five lateral line canals show the same pattern of development whether or not they contain neuromasts. The five canals develop asynchronously, and each of the canals develops either rostro-caudally or caudo-rostrally. Canal 3 is the homologue of a single trunk canal in other teleosts; canals 1, 2, 4, and 5 are apomorphic features of the two species of Hexagrammos. Canals 1, 2, 4, and 5 cannot be functional components of the lateral line system because they do not contain neuromasts and thus cannot be adaptations for the alteration of lateral line function. The occurrence of lateral line canals lacking neuromasts demands a direct assessment of neuromast distributions in the lateral line canals among fishes. Finally, our data suggest that the putative role of neuromasts in the morphogenesis of lateral line canals and the nature of neuromast-bone relationships need to be critically reevaluated. J. Morphol. 233:195–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Parapercis colias (blue cod) and Cheimarrichthys fosteri (torrentfish) are two members of the family Pinguipedidae. They reside in habitats with different background levels of hydrodynamic activity and differ in their feeding ecology. The peripheral morphology of the mechanosensory lateral line system was investigated in each species. The torrentfish is the only freshwater member of this otherwise exclusively marine family. It resides in turbulent fast flowing habitats and feeds nocturnally on stream drift. Torrentfish have many superficial neuromasts and a simple unbranched canal system. In comparison the blue cod resides in sub-tidal slow flowing habitats, is a diurnal predator and has relatively few superficial neuromasts and a well-developed branching canal system. For these two species the background level of hydrodynamic activity does not appear to be the dominant selection pressure on lateral line morphology, in the case of the torrentfish in particular it is more compelling to view lateral line morphology in the light of environmental pressures that have favoured the evolution of nocturnal feeding.  相似文献   

7.
The relatively simple structural organization of the cranial lateral line system of bony fishes provides a valuable context in which to explore the ways in which variation in post‐embryonic development results in functionally distinct phenotypes, thus providing a link between development, evolution, and behavior. Vital fluorescent staining, histology, and scanning electron microscopy were used to describe the distribution, morphology, and ontogeny of the canal and superficial neuromasts on the head of two Lake Malawi cichlids with contrasting lateral line canal phenotypes (Tramitichromis sp. [narrow‐simple, well‐ossified canals with small pores] and Aulonocara stuartgranti [widened, more weakly ossified canals with large pores]). This work showed that: 1) the patterning (number, distribution) of canal neuromasts, and the process of canal morphogenesis typical of bony fishes was the same in the two species, 2) two sub‐populations of neuromasts (presumptive canal neuromasts and superficial neuromasts) are already distinguishable in small larvae and demonstrate distinctive ontogenetic trajectories in both species, 3) canal neuromasts differ with respect to ontogenetic trends in size and proportions between canals and between species, 4) the size, shape, configuration, physiological orientation, and overall rate of proliferation varies among the nine series of superficial neuromasts, which are found in both species, and 5) in Aulonocara, in particular, a consistent number of canal neuromasts accompanied by variability in the formation of canal pores during canal morphogenesis demonstrates independence of early and late phases of lateral line development. This work provides a new perspective on the contributions of post‐embryonic phases of lateral line development and to the generation of distinct phenotypes in the lateral line system of bony fishes. J. Morphol. 277:1273–1291, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
The development of two of the cranial lateral line canals is described in the cichlid, Archocentrus nigrofasciatus. Four stages of canal morphogenesis are defined based on histological analysis of the supraorbital and mandibular canals. "Canal enclosure" and "canal ossification" are defined as two discrete stages in lateral line canal development, which differ in duration, an observation that has interesting implications for the ontogeny of lateral line function. Canal diameter in the vicinity of individual neuromasts begins to increase before ossification of the canal roof in each canal segment; this increase in canal diameter is accompanied by an increase in canal neuromast size. The mandibular canal generally develops later than the supraorbital canal in this species, but in both of these canals development of the different canal segments contained within a single dermal bone is asynchronous. These observations suggest that a dynamic process requiring integration and interaction among different tissues, in both space and time, underlies the development of the cranial lateral line canal system. The supraorbital and mandibular canals appear to demonstrate a "one-component" pattern of development in Archocentrus nigrofasciatus, where the walls of each canal segment grow up from the underlying dermal bone and then fuse to form the bony canal roof. This is contrary to numerous published reports that describe a "two-component" pattern of development in teleosts where the bony canal ossifies separately and then fuses with an underlying dermal bone. A survey of the literature in which lateral line canal development is described using histological analysis suggests that the occurrence of two different patterns of canal morphogenesis ("one-component" and "two-component") may be due to phylogenetic variation in the pattern of the development of the lateral line canals.  相似文献   

9.
Ontogeny and phylogeny of the trunk lateral line system in cichlid fishes   总被引:1,自引:0,他引:1  
An examination of the ontogeny of the lateral line trunk canal and the diversity of adult trunk canal patterns among cichlids indicates that bidirectional canal formation is a general ontogenetic pattern in the Cichlidae with the exception of Cichla and those few species with a complete trunk canal pattern. In addition to the tubed scales which make up the trunk canal, some lateral line scales have pits containing superficial neuromasts. These are recognized as components of the lateral line system of the trunk in adult cichlids for the first time. Eight trunk canal patterns that are variations on a simple disjunct pattern are defined among the 17 cichlid genera examined. Using bidirectional canal formation as a developmental model, these patterns can be placed along an ontogenetic spectrum. This suggests that heterochrony (alterations in the timing of development) is an important mechanism of evolutionary change in the lateral line system of the trunk in cichlid fishes.  相似文献   

10.
Innervation of the lateral line canal system in seven batoid species (representing seven families in three orders) provided a reliable basis for the identification of each canal element. Previous topographic definitions of the canal elements have failed to recognize homologies within batoids for the scapular and hyomandibular canals. The former is innervated by the posterior lateral line nerve and the latter is innervated by an external mandibular branch of the anterior lateral line nerve. This indicates that the scapular canal is represented only by the scapular loop in Myliobatoidei.  相似文献   

11.
In the present review, signal-processing capabilities of the canal lateral line organ imposed by its peripheral architecture are quantified in terms of a limited set of measurable physical parameters. It is demonstrated that cupulae in the lateral line canal organ can only partly be described as canal fluid velocity detectors. Deviation from velocity detection may result from resonance, and can be characterized by the extent to which a single dimensionless resonance number, N r , exceeds 1. This number depends on four physical parameters: it is proportional to cupular size, cupular sliding stiffness and canal fluid density, and inversely proportional to the square of fluid viscosity. Situated in a canal, a cupula may benefit from its resonance by compensating for the limited frequency range of water motion that is efficiently transferred into the lateral line canal. The peripheral transfer of hydrodynamic signals, via canal and cupula, leads to a nearly constant sensitivity to outside water acceleration in a bandwidth that ranges from d.c. to a cut-off frequency of up to several hundreds of Hertz, significantly exceeding the cut-off frequency of the lateral line canal. Threshold values of hydrodynamic detection by the canal lateral line organ are derived in terms of water displacement, water velocity, water acceleration and water pressure gradients and are shown to be close to the detection limits imposed by hair cell mechano-transduction in combination with the physical constraints of peripheral lateral line signal transfer. The notion that the combination of canal- and cupular hydrodynamics effectively provides the lateral line canal organ with a constant sensitivity to water acceleration at low frequencies so that it consequently functions as a low-pass detector of pressure gradients, supports the appropriateness of describing it as a sense organ that “feels at a distance” (Dijkgraaf in Biol Rev 38:51–105, 1963)  相似文献   

12.
Morphology of the postotic laterosensory canal was surveyed across loricarioid and outgroup catfishes in order to resolve conflicting statements regarding homology and phylogenetic significance of intrinsic character variation. A pterotic branch is widespread among catfishes and has been identified as a synapomorphy for siluriforms, but its presence in loricarioid catfishes has been disputed. In contrast to previous statements that absence of a pterotic branch is synapomorphic for loricarioids, we confirm the presence of a pterotic branch in Nematogenys inermis and other trichomycterids, callichthyids, and loricariids. The pterotic branch is secondarily absent in scoloplacids and astroblepids. We present criteria for establishing homology of the pterotic branch and review character state optimization schemes on the currently accepted phylogeny. The postotic region of loricariids is further specialized in having an expanded swimbladder capsule that incorporates the trunk lateral line canal and has a lateral opening covered by a greatly expanded pterotic complex. The trunk lateral line enters the swimbladder capsule mesial to the pterotic lateral wall and passes anteromedially as a fleshy tube before forming the postotic canal in the pterotic, a morphology reported previously for a single loricariid representative. Variation in the relative extent and topographic position of postotic canal branches and other morphologies is diagnostic of certain loricariid taxa, suggesting a rich character complex of potential utility in phylogeny reconstruction.  相似文献   

13.
This study examined within‐reef distributions for 19 species of butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef, Australia, and compared spatial patterns of abundance among species with contrasting diets. Spatial variation in abundance of butterflyfishes was most prominent among physiognomic reef zones mainly due to significant zonation of eight species, including four obligate hard‐coral feeders (Chaetodon trifascialis, Chaetodon baronessa, Chaetodon plebeius and Chaetodon lunulatus) and four generalist species (Chaetodon auriga, Chaetodon citrinellus, Chaetodon kleinii and Chaetodon rafflesi). Distributions of obligate hard‐coral feeders were closely associated with spatial variation in percentage cover of scleractinian corals, but no more restricted compared with facultative hard‐coral feeders or non‐coral feeders. Species with highest dietary specialization (C. trifascialis and C. baronessa), however, exhibited the most pronounced zonation patterns and were restricted to habitats with greatest abundance of their preferred prey. While there are conspicuous links between dietary specialization v. spatial patterns in abundance of butterflyfishes, it remains unclear whether dietary specialization is the cause or consequence of more restricted distributions.  相似文献   

14.
The New Zealand bigeye, Pempheris adspersa, is a nocturnal planktivore and has recently been found to be an active sound producer. The rostral end of the swim bladder lies adjacent to Baudelot''s ligament which spans between the bulla and the cleithrum bone of the pectoral girdle. The aim of this study was to use the auditory evoked potential technique to physiologically test the possibility that this structure provides an enhanced sensitivity to sound pressure in the bigeye. At 100 Hz, bigeye had hearing sensitivity similar to that of goldfish (species with a mechanical connection between the swim bladder and the inner ear mediated by the Weberian ossicles) and were much more sensitive than other teleosts without ancillary hearing structures. Severing Baudelot''s ligament bilaterally resulted in a marked decrease in hearing sensitivity, as did swim bladder puncture or lateral line blockage. These results show that bigeye have an enhanced sensitivity to sound pressure and provide experimental evidence that the functional basis of this sensitivity represents a novel hearing specialization in fish involving the swim bladder, Baudelot''s ligament and the lateral line.  相似文献   

15.
Marine butterflyfishes (10 genera, 114 species) are conspicuously beautiful and abundant animals found on coral reefs worldwide, and are well studied due to their ecological importance and commercial value. Several phylogenies based on morphological and molecular data exist, yet a well-supported molecular phylogeny at the species level for a wide range of taxa remains to be resolved. Here we present a molecular phylogeny of the butterflyfishes, including representatives of all genera (except Parachaetodon) and at least one representative of all commonly cited subgenera of Chaetodon (except Roa sensuBlum, 1988). Genetic data were collected for 71 ingroup and 13 outgroup taxa, using two nuclear and three mitochondrial genes that total 3332 nucleotides. Bayesian inference, parsimony, and maximum likelihood methods produced a well-supported phylogeny with strong support for a monophyletic Chaetodontidae. The Chaetodon subgenera Exornator and Chaetodon were found to be polyphyletic, and the genus Amphichaetodon was not the basal sister group to the rest of the family as had been previously proposed. Molecular phylogenetic analysis of data from 5 genes resolved some clades in agreement with previous phylogenetic studies, however the topology of relationships among major butterflyfish groups differed significantly from previous hypotheses. The analysis recovered a clade containing Amphichaetodon, Coradion, Chelmonops, Chelmon, Forcipiger, Hemitaurichthys, Johnrandallia, and Heniochus. Prognathodes was resolved as the sister to all Chaetodon, as in previous hypotheses, although the topology of subgeneric clades differed significantly from hypotheses based on morphology. We use the species-level phylogeny for the butterflyfishes to resolve long-standing questions regarding the use of subgenera in Chaetodon, to reconstruct molecular rates and estimated dates of diversification of major butterflyfish clades, and to examine global biogeographic patterns.  相似文献   

16.
Plant defense theories commonly predict negative correlations among anti-herbivore resistance traits. Although this prediction has been widely accepted, the majority of empirical studies have failed to account for similarities among species due to common ancestry, thus risking pseudoreplication. Wild cotton plants possess traits conferring both direct resistance (toxic leaf glands and trichomes) and indirect resistance (extrafloral nectaries that reward enemies of herbivores). The evidence for negative phenotypic correlations among these resistance traits was examined at two levels: within Gossypium thurberi (wild cotton) and across species in the cotton clade (Gossypieae). A phylogenetic analysis controlled for shared ancestry among species. Across the Gossypieae, a strong negative correlation emerged between the direct resistance traits, leaf gland and trichomes. This correlation may reflect costs of these traits, a negative genetic correlation, or redundancy in their actions against herbivores. In contrast, the direct resistance traits (glands and trichomes) were not correlated with the indirect resistance trait of extrafloral nectar, either within or across species. The robust lack of correlation suggests that these direct and indirect resistance mechanisms evolve independently over evolutionary time scales. This conclusion conflicts with both predictions of plant defense theory and the majority of prior comparisons of direct and indirect resistance traits and may reflect the facultative nature of indirect resistance in Gossypieae.  相似文献   

17.
The morphology of the swim bladder and inner ear of the nurseryfish, Kurtus gulliveri, appear adapted for enhanced pressure wave reception. The saccule is enlarged and surrounded by very thin bone and two large fontanelles that would present reduced resistance to pressure waves. The swim bladder is elaborate, with six dorsolaterally projecting pairs of lobes that are tightly encased in ribs and an additional caudally projecting pair of lobes encased in the first hemal spine. The ribs and musculature surrounding the swim bladder laterally are very thin, so that four or five "rib windows" are readily apparent on back-lit specimens. This swim bladder-rib configuration would also present reduced resistance to pressure waves to enhance function as a peripheral auditory structure. However, high-resolution X-ray computed tomography and dissection reveal no anterior projections of the swim bladder that could serve as a mechanical coupling to the inner ear. The posterior lateral line nerve is well developed and lies directly over the tips of the ribs encasing the swim bladder lobes. This nerve is not, however, associated with a lateral line canal and a lateral line canal is absent on most of the body. We hypothesize that the posterior lateral line nerve transmits mechanosensory information from the swim bladder.  相似文献   

18.
Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilize distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.  相似文献   

19.
We investigated in goldfish, Carassius auratus, how running water affects the responses of toral lateral line units to a stationary vibrating sphere or to a non-vibrating sphere that moves along the side of the fish. Experiments were conducted in the presence of running water (hydrodynamic noise) to further explore the sensory capabilities of the lateral line with special focus on the morphological sub-modalities. Previous recordings from lateral line nerve fibres in various fish species and the first nucleus of the ascending lateral line pathway in goldfish revealed flow-sensitive and flow-insensitive units. These physiological differences represent, at least in part, the differences in morphology of the lateral line, superficial and canal neuromasts. Following up on these findings we recorded flow-sensitive and flow-insensitive units in the Torus semicircularis of goldfish. In still water, both types of units responded to a vibrating or moving sphere. In running water, neural responses were weaker when the sphere was moved with the flow but were comparable or slightly stronger when the sphere was moved against the flow. In running water, responses of flow-sensitive fibres to the vibrating sphere were masked. In contrast, the responses of units insensitive to water flow were not masked. Our data confirm previous findings but also indicate differences when compared to previous reports. We discuss these differences with respect to lateral line morphology, sub-modalities and convergence of different channels of information at higher brain stations.  相似文献   

20.
The lateral line system of teleost fish is composed of mechanosensory receptors (neuromasts), comprising superficial receptors and others embedded in canals running under the skin. Canal diameter and size of the canal neuromasts are correlated with increasing body size, thus providing a very simple system to investigate mechanisms underlying the coordination between organ growth and body size. Here, we examine the development of the trunk lateral line canal system in zebrafish. We demonstrated that trunk canals originate from scales through a bone remodeling process, which we suggest is essential for the normal growth of canals and canal neuromasts. Moreover, we found that lateral line cells are required for the formation of canals, suggesting the existence of mutual interactions between the sensory system and surrounding connective tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号