首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.  相似文献   

2.
Serum or whole blood samples, obtained from 141 white-tailed deer (Odocoileus virginianus) in Connecticut (USA) during 1980, 1991, and 1996, were analyzed to detect past or current infections of Ehrlichia phagocytophila genogroup organisms and Borrelia burgdorferi. When the BDS or NCH-1 strains of granulocytic ehrlichiae were used separately in indirect fluorescent antibody (IFA) staining methods, antibody positivity rates varied from 25 to 64% in 1991 and 1996, respectively. All 50 sera tested from 1980 collections were negative. Although percentages of sera with B. burgdorferi antibodies, as detected by an enzyme-linked immunosorbent assay, also differed (23 to 53%), there were coexisting antibodies to both bacteria in 20 (49%) of 41 sera. In tests on specificity, 19 deer sera with ehrlichial antibodies also were tested by IFA staining procedures for Anaplasma marginale antibodies; one serum with a titer of 1:5,120 to ehrlichial antigen reacted to A. marginale antigen at a serum dilution of 1:320. In parallel analyses of 69 sera, results of Western blot analyses for ehrlichial infections in deer were concordant (72% agreement) with those of IFA staining methods containing ehrlichial antigen. All positive immunoblots showed bands to peptides of the NCH-1 strain of the human granulocytic ehrlichiosis (HGE) agent having molecular masses of about 44, 105, or 110 kDa. In polymerase chain reaction (PCR) studies of blood samples from 63 deer, 11 (18%) specimens were positive for 16S ribosomal DNA of an Ehrlichia phagocytophila genogroup organism, whereas 23 (37%) samples were positive for the DNA of the 44 kDa gene of the HGE agent. White-tailed deer are exposed to different tick-borne bacteria in areas where Ixodes scapularis ticks are abundant and may, in some instances, have had concurrent infections.  相似文献   

3.
IgM responses are well known to occur early postinfection and tend to be short-lived, which has suggested that this Ig does not significantly contribute to long-term immunity. In this study, we demonstrate that chronic infection with the intracellular bacterium Ehrlichia muris elicits a protective, long-term IgM response. Moreover, we identified a population of CD138(high)IgM(high) B cells responsible for Ag-specific IgM production in the bone marrow. The IgM-secreting cells, which exhibited characteristics of both plasmablasts and plasma cells, contributed to protection against fatal ehrlichial challenge. Mice deficient in activation-induced cytidine deaminase, which produce only IgM, were protected against fatal ehrlichial challenge infection. The IgM-secreting cells that we have identified were maintained in the bone marrow in the absence of chronic infection, as antibiotic-treated mice remained protected against challenge infection. Our studies identify a cell population that is responsible for the IgM production in the bone marrow, and they highlight a novel role for IgM in the maintenance of long-term immunity during intracellular bacterial infection.  相似文献   

4.
Suman Mahan and co-authors review the strategies applied to develop improved vaccines for Cowdria ruminantium infections (heartwater). Inactivated vaccines using cell-cultured C. ruminantium organisms combined with an adjuvant are capable of protecting goats, sheep and cattle against lethal C. ruminantium challenge. Immune responses induced with this vaccine, or after recovery from infection, target outer membrane proteins of C. ruminantium, in particular the major antigenic protein 1 (MAP-1). Genetic immunizations with the gene encoding MAP-1 induce protective T helper cell type 1 responses against lethal challenge in a mouse model. Similarly, homologues of MAP-1 in other phylogenetically and antigenically related ehrlichial agents such as Anaplasma marginale and Ehrlichia chaffeensis are also targets of protective responses. Given the antigenic similarities between the related ehrlichial agents, common strategies of vaccine development could be applied against these agents that cause infections of importance in animals and humans.  相似文献   

5.
Anaplasma marginale is a tick-transmitted ehrlichial pathogen causing severe morbidity and mortality in livestock on six continents. Development of safe effective vaccines would be greatly facilitated by identification of the protective immune mechanisms and by understanding how the pathogen evades immune effectors to establish persistent infection. In this article, Guy Palmer and colleagues review recent progress in identifying how defined epitopes induce protective immunity and the role of antigenic variation in these epitopes as a mechanism of persistence.  相似文献   

6.
A total of 390 adult ticks (288 Ixodes ovatus and 102 I. persulcatus ) collected at the foot of Mt. Fuji and two near cities in Shizuoka prefecture, Japan, were examined for Ehrlichia infection by isolation with laboratory mice from whole tick tissues. Ehrlichial DNAs were detected from the spleens of mice inoculated with tissues from I. ovatus, but not I. persulcatus. The prevalence of ehrlichiae in the ticks was estimated to be ca. 3%. The 16S rDNA analysis revealed that the sequences of 8 ehrlichial isolates (termed "Shizuoka" isolates) obtained were identical, and they were very similar, but not identical, to those of two Ehrlichia species strain variants recently isolated in Japan, followed by Ehrlichia chaffeensis in the US. Analysis of parts of the omp-1 multigene family specific for monocytic ehrlichiosis agents showed that the Shizuoka isolates were distinct from other ehrlichial organisms. The Shizuoka isolates caused death in immunocompetent laboratory mice, suggesting that they are highly pathogenic in mice. The data show that the Shizuoka isolates are likely to be a new strain variant of Ehrlichia species in Japan. Further characterization and surveillance will be required in Japan due to the presence of these human ehrlichiosis agent-like organisms.  相似文献   

7.
The use of laboratory mice to investigate correlates of infectious disease, including infection kinetics, cellular alterations, cytokine profiles, and immune response in the context of an intact host has expanded exponentially in the last decade. A marked increase in the availability of transgenic mice and research tools developed specifically for the mouse parallels and enhances this research. Human granulocytic ehrlichiosis (HGE) is an emerging, zoonotic disease caused by tick-borne bacteria. The HGE agent (Anaplasma phagocytophila) is one of two recognized pathogens to cause human granulocytic ehrlichiosis (HGE). The mouse model of HGE complements in vitro tissue culture studies, limited in vivo large animal studies, and ex vivo studies of human and ruminant neutrophils, and promises new avenues to approach mechanisms of disease. In the overview reported here, we focus principally on current research into HGE pathogenesis using the mouse model. Included is a discussion of current changes in ehrlichial classification and nomenclature, a review of ehrlichial biology and ecology, and highlights of clinical disease in animals and people.  相似文献   

8.
9.
As already shown, some inducers of the differentiation of promyelocytic cells along the granulocytic pathway, such as dimethylsulphoxide (DMSO) or all-trans retinoic acid, can enhance propagation of granulocytic ehrlichiae in HL-60 cell cultures. This study was conducted to prove whether sodium valproate, a salt of di-n-propylacetic acid (VPA) known to trigger cellular differentiation in several solid and hematopoietic malignancies is similarly efficient in ehrlichial cultures. Two cell lines derived from HL-60, that is, low-passage undifferentiated HL-60 (HL-60F) and high-passage HL-60 spontaneously differentiated towards monocytic phenotype (HL-60J) were grown in RPMI 1640 medium supplemented with 10% FBS. The respective HL-60F and HL-60J IC50-values for NaVPA were estimated to be 0.8 and 2.2 mM under these culture conditions; to stimulate the differentiation, the respective doses of 0.3 and 1.2 mM were then applied. When the NaVPA-treated cells of both lines were challenged with an ehrlichial laboratory strain (HGE), maintained in splenectomized NMRI mice, the respective 1–2 and ≤0.1% primary infection rates in HL-60F and HL-60J cultures were observed 3 days post-inoculation. In comparison, only rare (≤0.1%) infected HL-60F and no infected HL-60J cells were recorded under the same experimental conditions in untreated control cultures. HGE continuously propagated in NaVPA-supplemented HL-60F cultures remained infectious to mice at least up to the 95th passage (12 months). NaVPA can thus facilitated continuous propagation of granulocytic ehrlichiae in cell cultures without a substantial loss of infectiveness. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
11.
In order to determine the role of coyotes in the epidemiology of granulocytic and monocytic ehrlichial agents in California (USA), we tested 149 serum samples for antibodies against Ehrlichia equi, E. risticii, and E. canis, using an indirect immunofluorescent antibody test. Polymerase chain reaction (PCR) assay was used to survey for the presence of members of the E. phagocytophila genogroup, E. risticii and E. canis in blood samples of 95 coyotes. Sixty-eight (46%) samples were seropositive for E. equi, two (1%) for E. risticii and none of the samples had antibodies reactive to E. canis. Two and one coyote were positive for E. risticii and members of the E. phagocytophila genogroup by PCR assay, respectively. In contrast, the 95 samples were negative for E. canis by PCR. Ninety-five percent of the 68 E. equi seropositive coyotes and the one coyote PCR positive for members of the E. phagocytophila genogroup originated from a coastal area. However, the two E. risticii seropositive coyotes and the two coyotes PCR positive for E. risticii were from northern California. Sequence analysis of the three amplified PCR products revealed the agent to be similar in two coyotes to the sequences of E. risticii from horses originating from northern California and identical in one coyote to the agent of human granulocytic ehrlichiosis and E. equi from California. Thus, coyotes are exposed to granulocytic ehrlichiae and E. risticii and may play a role in the epidemiology of these ehrlichial agents in California.  相似文献   

12.
The ehrlichiae are small Gram-negative obligate intracellular bacteria in the family Anaplasmataceae. Ehrlichial infection in an accidental host may result in fatal diseases such as human monocytotropic ehrlichiosis, an emerging, tick-borne disease. Although the role of adaptive immune responses in the protection against ehrlichiosis has been well studied, the mechanism by which the innate immune system is activated is not fully understood. Using Ehrlichia muris as a model organism, we show here that MyD88-dependent signaling pathways play a pivotal role in the host defense against ehrlichial infection. Upon E. muris infection, MyD88-deficient mice had significantly impaired clearance of E. muris, as well as decreased inflammation, characterized by reduced splenomegaly and recruitment of macrophages and neutrophils. Furthermore, MyD88-deficient mice produced markedly lower levels of IL-12, which correlated well with an impaired Th1 immune response. In vitro, dendritic cells, but not macrophages, efficiently produced IL-12 upon E. muris infection through a MyD88-dependent mechanism. Therefore, MyD88-dependent signaling is required for controlling ehrlichial infection by playing an essential role in the immediate activation of the innate immune system and inflammatory cytokine production, as well as in the activation of the adaptive immune system at a later stage by providing for optimal Th1 immune responses.  相似文献   

13.
Humoral immune mechanisms are an important component of protective immunity to Ehrlichia species. However, the molecular basis of antibody mediated immunity is not completely defined, and the role of most molecularly characterized major immunoreactive proteins is unknown. In previous studies, we mapped major species-specific continuous epitopes in three surface exposed and secreted tandem repeat proteins (TRP32, TRP47 and TRP120). In this study, we report that protection is provided by antibodies against these molecularly defined TRP epitopes using in vitro and in vivo models. Protection was demonstrated in vitro after prophylactic and therapeutic administration of epitope-specific anti-TRP antibodies, suggesting that the protective mechanisms involve extracellular and intracellular antibody-mediated effects. In vivo passive transfer of individual epitope-specific TRP sera significantly reduced the ehrlichial load and splenomegaly, and protected mice against lethal infection. Moreover, the combination of antibodies to all three TRPs provided enhanced reduction in ehrlichial load similar to that of Ehrlichia chaffeensis immune sera. IgG1 was the predominant antibody isotype in the epitope-specific TRP mouse sera. These results demonstrate that antibodies against linear epitopes in TRP32, TRP47 and TRP120 are protective during E. chaffeensis infection and involves extracellular and intracellular antibody-mediated mechanisms.  相似文献   

14.
Anaplasma marginale is a tick-borne ehrlichial pathogen of cattle for which six major surface proteins (MSPs) have been described. The MSP1 complex, a heterodimer composed of MSP1a and MSP1b, was shown to induce a protective immune response in cattle and both proteins have been identified as putative adhesins for bovine erythrocytes. In this study the role of MSP1a and MSP1b as adhesins for bovine erythrocytes and tick cells was defined. msp1alpha and msp1beta1 genes from the Oklahoma isolate of A. marginale were cloned and expressed in Escherichia coli K-12 under the control of endogenous and tac promoters for both low and high level protein expression. Expression of the recombinant polypeptides was confirmed and localised on the surface of transformed E. coli. The adhesion properties of MSP1a and MSP1b were determined by allowing recombinant E. coli expressing these surface polypetides to react with bovine erythrocytes, Dermacentor variabilis gut cells and cultured tick cells derived from embryonic Ixodes scapularis. Adhesion of the recombinant E. coli to the three cell types was determined using recovery adhesion and microtiter haemagglutination assays, and by light and electron microscopy. MSP1a was shown by all methods tested to be an adhesin for bovine erythrocytes and both native and cultured tick cells. In contrast, recombinant E. coli expressing MSP1b adhered only to bovine erythrocytes and not to tick cells. When low expression vectors were used, single E. coli expressing MSP1a was seen adhered to individual tick cells while reaction of tick cells with the E. coli/MSP1a/high expression vector resulted in adhesion of multiple bacteria per cell. With electron microscopy, fusion of E. coli cell membranes expressing MSP1a or MSP1b with erythrocyte membranes was observed, as well as fusion of tick cell membranes with E. coli membranes expressing MSP1a. These studies demonstrated differential adhesion for MSP1a and MSP1b for which MSP1a is an A. marginale adhesin for both bovine erythrocytes and tick cells while MSP1b is an adhesin only for bovine erythrocytes. The role of the MSP1 complex, therefore, appears to vary among vertebrate and invertebrate hosts.  相似文献   

15.
Antibodies reactive with Ehrlichia chaffeensis were detected in raccoon (Procyon lotor) serum samples by using an indirect immunofluorescence assay. Samples from 411 raccoons trapped in the southeastern United States from 1977 to 1999 were tested. Serologically reactive samples with reciprocal titers of > or =16 were detected from 83 raccoons (20%) from 13 of 16 counties in eight states, indicating that raccoons are commonly exposed to E. chaffeensis. Samples collected as early as 1977 were positive. A polymerase chain reaction assay specific for E. chaffeensis failed to detect the presence of ehrlichial DNA in serum samples from 20 representative seroreactive raccoons. Because of serologic cross-reactivity among antigens derived from different Ehrlichia spp., additional immunologic, molecular, or culture-based studies will be required to confirm E. chaffeensis infections of raccoons in the southeastern United States.  相似文献   

16.
Successful control of greenhouse whitefly may be achieved by complementary activity of the parasitoidEncarsia formosa and the fungusAschersonia aleyrodis. One way to obtain an additive mortality effect of both entomopathogen and parasitoid would be achieved by the selection of healthy hosts by the parasitoid and rejection of fungus-infected hosts. Third and fourth instar larvae ofTrialeurodes vaporariorum which had been treated with a spore suspension ofA. aleyrodis 0, 4, 7, 10 or 14 days beforehand, were presented to female parasitoids. The parasitoids adopted the oviposition posture on untreated hosts as well as on treated hosts, irrespective of the different stages of infection in the hosts. However, significantly more hosts were parasitized byE. formosa in the control treatment than in the fungal treatment. The parasitoids offered treated hosts, showed rejection behaviour after probing on hosts showing detectable signs of infection (containing hyphal bodies or mycelium in the haemolymph). For instance, when hosts were offered seven days after spore treatment, the parasitoids showed an oviposition posture on a total of 83 (95.4%) out of 87 infected larvae, but laid only 4 eggs (4.6%). In contrast, on 48 (94.1%) out of 51 noninfected (or showing no detectable signs of infection) hosts an oviposition posture was adopted and 40 eggs (78.4%) were found after dissection. When infected hosts were encountered the oviposition posture lasted less than 1′40″ while rejection of non-infected hosts occurred after more than 1′40″. Other experiments were carried out offering treated hosts for 24 h to the parasitoids. The hosts were dissected afterwards. Again, significantly more eggs were laid in the non-infected hosts. When hosts were parasitized shortly after fungal spore treatment they were colonized by the fungus and the parasitoids did not develop. Transmission of the entomopathogen after probing infected hosts was observed to a limited extent. In conclusion,A. aleyrodis andE. formosa can be used together in a glasshouse situation. The parasitoid will be most effective when introduced more than seven days after application ofA. aleyrodis, because from that time onwards it is able to detect and reject fungus-infected hosts.  相似文献   

17.
Human pathogens transmitted by ticks undergo complex life cycles alternating between the arthropod vector and a mammalian host. While the latter has been investigated to a greater extent, examination of the biological interactions between microbes and the ticks that carry them presents an equally important opportunity for disruption of the disease cycle. In this study, we used in situ hybridization to demonstrate infection by the Ehrlichia muris-like organism, a newly recognized human pathogen, of Ixodes scapularis ticks, a primary vector for several important human disease agents. This allowed us to assess whole sectioned ticks for the patterns of tissue invasion, and demonstrate generalized dissemination of ehrlichiae in a variety of cell types and organs within ticks infected naturally via blood feeding. Electron microscopy was used to confirm these results. Here we describe a strong ehrlichial affinity for epithelial cells, neuronal cells of the synganglion, salivary glands, and male accessory glands.  相似文献   

18.
Theory predicts that the acceptance of hosts already parasitized by a conspecific will depend both on egg load and the availability of hosts. In the present laboratory study, we tested the effect of egg load and host encounter rate on the propensity of superparasitism in the solitary parasitoid Aptesis nigrocincta Gravenhorst (Hymenoptera, Ichneumonidae), a synovigeneous ectoparasitoid of prepupae of the European Apple Sawfly. Parasitoid females carry few voluminous eggs at a time and the egg maturation rate is less than one egg per day. Egg load was manipulated by giving females access to hosts one week prior to the start of treatments and host availability by giving females access to either one host cocoon every day or every other day. In the first treatment where females had a high egg load of 5.3 egg in their ovaries and encountered host cocoons at low rates, we found that parasitized hosts were accepted to the same degree as healthy hosts. In females with significantly decreased egg load (3.8 eggs) encountering hosts at the same rate we found a slight but non‐significant decrease in the acceptance of parasitized hosts compared with healthy hosts. In contrast, A. nigrocincta females accepted significantly fewer parasitized hosts at a high host encounter rate that would lead them to the point of egg limitation in the near future. Within the range of egg loads tested, the host encounter rate appears to be the most important determinant for a females decision to oviposit onto hosts already parasitized by a conspecific.  相似文献   

19.
Theory predicts that the acceptance of hosts already parasitized by a conspecific will depend both on egg load and the availability of hosts. In the present laboratory study, we tested the effect of egg load and host encounter rate on the propensity of superparasitism in the solitary parasitoid Aptesis nigrocincta Gravenhorst (Hymenoptera, Ichneumonidae), a synovigeneous ectoparasitoid of prepupae of the European Apple Sawfly. Parasitoid females carry few voluminous eggs at a time and the egg maturation rate is less than one egg per day. Egg load was manipulated by giving females access to hosts one week prior to the start of treatments and host availability by giving females access to either one host cocoon every day or every other day. In the first treatment where females had a high egg load of 5.3 egg in their ovaries and encountered host cocoons at low rates, we found that parasitized hosts were accepted to the same degree as healthy hosts. In females with significantly decreased egg load (3.8 eggs) encountering hosts at the same rate we found a slight but non-significant decrease in the acceptance of parasitized hosts compared with healthy hosts. In contrast, A. nigrocincta females accepted significantly fewer parasitized hosts at a high host encounter rate that would lead them to the point of egg limitation in the near future. Within the range of egg loads tested, the host encounter rate appears to be the most important determinant for a females decision to oviposit onto hosts already parasitized by a conspecific.  相似文献   

20.
Tuberculosis (TB) is an infectious disease with a peculiar feature: Upon infection with the causative agent, Mycobacterium Tuberculosis (MTB), most hosts enter a latent state during which no transmission of MTB to new hosts occurs. Only a fraction of latently infected hosts develop TB disease and can potentially infect new hosts. At first glance, this seems like a waste of transmission potential and therefore an evolutionary suboptimal strategy for MTB. It might be that the human immune response keeps MTB in check in most hosts, thereby preventing it from achieving its evolutionary optimum. Another possible explanation is that long latency and progression to disease in only a fraction of hosts are evolutionary beneficial to MTB by allowing it to persist better in small host populations. Given that MTB has co-evolved with human hosts for millenia or longer, it likely encountered small host populations for a large share of its evolutionary history and had to evolve strategies of persistence. Here, we use a mathematical model to show that indeed, MTB persistence is optimal for an intermediate duration of latency and level of activation. The predicted optimal level of activation is above the observed value, suggesting that human co-evolution has lead to host immunity, which keeps MTB below its evolutionary optimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号