首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectral evidence indicates that molar concentrations of K+ can induce aggregate formation in d(TGG)4. The 320-nm turbidity monitoring indicates that more than 1 M KCl is needed for the onset of aggregation to occur at 20 degrees C within the time span of 24 h. The kinetic profile is reminiscent of autocatalytic reactions that consist of a lag period followed by accelerative and levelling phases. Progressive shortening of lag periods and more rapid accelerative phases accompany further increases in [K+]. Interestingly, the presence of Mg2+ greatly facilitates the aggregate formation and results in the prominent appearance of an intense psi-type CD. For example, whereas 1 M K+ fails to induce aggregate formation of d(TGG)4 within 24 h, the addition of 1 mM Mg2+ to a 1 M K+ solution is sufficient to induce the onset of aggregation in approximately 12 h. Furthermore, adjustment of the buffer to 16 mM Mg2+/1 M KCl reduces the lag time to less than 10 min and aggregation is nearly complete in 2 h. The requirement of [K+] for aggregation is reduced to 2 mM in the presence of 16 mM Mg2+, a reduction of nearly three orders of magnitude when compared to solutions without Mg2+. The effects of K+ and Mg2+ ions are synergistic, because the presence of 16 mM Mg2+ alone does not induce aggregate formation in this oligomer. Thermal stabilities of the aggregates are strongly dependent on the concentrations of these two ions. Although aggregates formed in the presence of 2 M KCl alone melt around 55 degrees C, those formed with added 16 mM Mg2+ melt at approximately 90 degrees C, with some aggregates remaining unmelted even at 95 degrees C. The slow kinetics of aggregate formation led to the appearance of gross hystereses in the cooling profiles. The interplay of these two ions appears to be specific, because the replacement of K+ by Na+ or the replacement of Mg2+ by other divalent cations does not lead to the observed self-assembly phenomenon, although Sr2+ can substitute for K+. A possible mechanism for the formation of self-assembled structures is suggested.  相似文献   

2.
Fragile X syndrome is caused by expansion of a d(CGG) trinucleotide repeat sequence in the 5′ untranslated region of the first exon of the FMR1 gene. Repeat expansion is thought to be instigated by formation of d(CGG)n secondary structures. Stable FMR1 d(CGG)n runs in normal individuals consist of 6–52 d(CGG) repeats that are interrupted every 9–11 triplets by a single d(AGG) trinucleotide. By contrast, individuals having fragile X syndrome premutation or full mutation present >54–200 or >200–2000 monotonous d(CGG) repeats, respectively. Here we show that the presence of interspersed d(AGG) triplets diminished in vitro formation of bimolecular tetrahelical structures of d(CGG)18 oligomers. Tetraplex structures formed by d(CGG)n oligomers containing d(AGG) interspersions had lower thermal stability. In addition, tetraplex structures of d(CGG)18 oligomers interspersed by d(AGG) triplets were unwound by human Werner syndrome DNA helicase at rates and to an extent that exceeded the unwinding of tetraplex form consisting of monotonous d(CGG)18. Diminished formation and stability of tetraplex structures of d(AGG)-containing FMR1 d(CGG)2–50 tracts might restrict their expansion in normal individuals.  相似文献   

3.
The early stages of heat induced aggregation at 67.5 degrees C of beta-lactoglobulin were studied by combined static light scattering and size exclusion chromatography. At all conditions studied (pH 8.7 without salt and pH 6.7 with or without 60 mM NaCl) we observe metastable heat-modified dimers, trimers, and tetramers. These oligomers reach a maximum in concentration at about the time when large aggregates (1000-4000 kg/mol) appear, after which they decline in concentration. By isolating the oligomers it was demonstrated that they rapidly form aggregates upon heating in the absence of monomeric protein, showing that these species are central to the aggregation process. To our knowledge this is the first time that intermediates in protein aggregation have been isolated. At all stages of aggregation the dominant oligomer was the heat-modified dimer. Whereas the heat-modified oligomers are formed at a higher rate at pH 8.7 than at pH 6.7, the opposite is the case for the formation of aggregates from the metastable oligomers indicating cross-linking via disulfide bridges for the oligomers and noncovalent interaction in the formation of the aggregates. The data suggest that an aggregate nucleus is formed from four oligomers. For protein concentrations of 10 or 20 g/l a heat-modified monomer can be observed until about the time when the maximum in concentration appears of the heat-modified dimer. The disappearance of this heat-modified monomer correlates to the formation of dimers (trimers and tetramers).  相似文献   

4.
Finke JM  Gross LA  Ho HM  Sept D  Zimm BH  Jennings PA 《Biochemistry》2000,39(50):15633-15642
A point mutation, lysine 97 to isoleucine, in the all-beta cytokine interleukin-1 beta (IL-1 beta) exhibits an increased propensity to form inclusion bodies in vivo and aggregates in vitro. In an effort to better understand the aggregation reaction and determine when intervention may allow rescue of protein from aggregation during renaturation, we developed a novel application of mass spectrometry using isotopic labeling to determine the step(s) at which K97I commits to either the native or aggregated state. Interestingly, despite the early formation of a folding intermediate ensemble at an observed rate lambda(2) of 4.0 s(-1), K97I commits to folding at a significantly slower rate lambda(CF) of 0.021 s(-1). This rate of commitment to folding is in excellent agreement with the observed rate of K97I native state formation (lambda(1) = 0.018 s(-1)). K97I also commits slowly to aggregation at an observed rate lambda(CA) of 0.023 s(-1). Earlier folding species and aggregates present prior to these commitment steps are likely to be in a reversible equilibrium between monomeric folding intermediates and higher-order oligomers. Kinetic and equilibrium experimental measurements of folding and aggregation processes are consistent with a nucleation-dependent model of aggregation.  相似文献   

5.
The aggregation behavior of guanylyl-(3'-5')-guanosine, GpG, in the form of the tetramethylammonium (TMA), Li, Na, and K salts in aqueous solution has been investigated by NMR and FTIR techniques. The salts were prepared by a cation-exchange method. The ability of the cations to induce aggregate formation is TMA+ < Li+ < Na+ < K+, where TMA+ has only a weakly promoting action and K+ has a very strong effect. Three types of aggregates have been observed: (a) small aggregates which are in rapid exchange with respect to the NMR time scale; (b) intermediate-sized aggregates which are slow to exchange; (c) very large aggregates which can only be observed by FTIR. In all cases the aggregated species are held together by base stacking and guanine-guanine hydrogen bonding. A stoichiometry of 2 GpG per K+ has been determined by a 1H NMR titration of TMAGpG with KCl. Models have been proposed for the various-sized species. These include stacked dimers, stacked tetramers (similar to G-tetrads), and species in which K+ ion bridges between phosphates in separate tetramers.  相似文献   

6.
Gel-filtration experiments indicate that a peptide (P2) composed of the basic region of GCN4 fused to the leucine heptad repeats of Lac repressor forms tetrameric aggregates. Gel-shift experiments were performed to determine the orientation of the helices in the tetrameric P2 aggregate. Sandwich-complex formation of peptide P2 with two DNA fragments containing two symmetrical CRE binding sites (5'-ATGACGTCAT-3') at a distance of 21 bp suggests antiparallel aggregation of the Lac leucine heptad repeats. Thus, we conclude that the leucine heptad repeats of Lac repressor have the ability to form homomeric 4-helical bundles with an antiparallel arrangement of the helices. This topology enables the two DNA fragments in the sandwich complexes to be held together by two tetramers of peptide P2. Replacement of the uncharged amino acids of the helical g and e positions of peptide P2 by the corresponding charged residues of GCN4 (peptide P4) results in a dimeric and parallel aggregation of the leucine heptad repeats, and consequently abolishes the potential to form sandwich structures. Similarly, a hybrid Lac repressor in which the GCN4 leucine zipper replaces the natural Lac leucine heptad repeats forms dimers only. It regains the ability to form tetramers when the charged amino acids in helical positions g and e are replaced by uncharged alanines.  相似文献   

7.
8.
This study explores the stabilities of single sheet parallel systems of three sequence variants of 1GNNQQNY7, N2D, N2S and N6D, with variations in aggregate size (5–8) and termini charge (charged or neutral). The aggregates were simulated at 300 and 330 K. These mutations decrease amyloid formation in the yeast prion protein Sup35. The present study finds that these mutations cause instability even in the peptide context. The protonation status of termini is found to be a key determinant of stabilities; other determinants are sequence, position of mutation and aggregate size. All systems with charged termini are unstable, whereas both stable and unstable systems are found when the termini are neutral. When termini are charged, the largest stable aggregate for the N2S and N6D systems has 3 to 4 peptides whereas N2D mutation supports oligomers of larger size (5-and 6-mers) as well. Mutation at 2nd position (N2S and N2D) results in fewer H-bonds at the mutated as well as neighboring (Gly1/Gln4) positions. However, no such effect is found if mutation is at 6th position (N6D). The effect of Asn→Asp mutation depends on the position and termini charge: it is more destabilizing at the 2nd position than at the 6th in case of neutral termini, however, the opposite is true in case of charged termini. Appearance of twist in stable systems and in smaller aggregates formed in unstable systems suggests that twist is integral to amyloid arrangement. Disorder, dissociation or rearrangement of peptides, disintegration or collapse of aggregates and formation of amorphous aggregates observed in these simulations are likely to occur during the early stages of aggregation also. The smaller aggregates formed due to such events have a variety of arrangements of peptides. This suggests polymorphic nature of oligomers and presence of a heterogeneous mixture of oligomers during early stages of aggregation.  相似文献   

9.
The extent to which proteins aggregate into distinct structures ranging from prefibrillar oligomers to amyloid fibrils is key to the pathogenesis of many age-related degenerative diseases. We describe here for the Alzheimer's disease-related amyloid β peptide (Aβ) an investigation of the sequence-based determinants of the balance between the formation of prefibrillar aggregates and amyloid fibrils. We show that by introducing single-point mutations, it is possible to convert the normally harmless Aβ40 peptide into a pathogenic species by increasing its relative propensity to form prefibrillar but not fibrillar aggregates, and, conversely, to abolish the pathogenicity of the highly neurotoxic E22G Aβ42 peptide by reducing its relative propensity to form prefibrillar species rather than mature fibrillar ones. This observation can be rationalized by the demonstration that whereas regions of the sequence of high aggregation propensity dominate the overall tendency to aggregate, regions with low intrinsic aggregation propensities exert significant control over the balance of the prefibrillar and fibrillar species formed, and therefore play a major role in determining the neurotoxicity of the Aβ peptide.  相似文献   

10.
11.
Miller Y  Ma B  Nussinov R 《Biochemistry》2011,50(23):5172-5181
Amyloid plaques and neurofibrillary tangles simultaneously accumulate in Alzheimer's disease (AD). It is known that Aβ and tau exist together in the mitochondria; however, the interactions between Aβ oligomers and tau are controversial. Moreover, it is still unclear which specific domains in the tau protein can interact with Aβ oligomers and what could be the effect of these interactions. Herein, we examine three different Aβ-tau oligomeric complexes. These complexes present interactions of Aβ with three domains in the tau protein; all contain high β-structure propensity in their R2, R3, and R4 repeats. Our results show that, among these, Aβ oligomers are likely to interact with the R2 domain to form a stable complex with better alignment in the turn region and the β-structure domain. We therefore propose that the R2 domain can interact with soluble Aβ oligomers and consequently promote aggregation. EM and AFM images and dimensions revealed highly polymorphic tau aggregates. We suggest that the polymorphic tau and Aβ-tau aggregates may be largely due to repeat sequences which are prone to variable turn locations along the tau repeats.  相似文献   

12.
Interspersed AGGs within the FMR1 gene CGG repeat region may anchor the sequence and prevent slippage during replication. In order to detect the AGG position variations, we developed a method employing partial MnlI restriction analysis and analyzed X chromosomes from 187 males, including 133 normal controls (117 with 20-34 and 16 with 35-52 repeats), plus 54 fragile X premutations with 56-180 repeats. Among controls, the interspersed AGG positions were highly polymorphic, with a heterozygosity of 91%. Among the control samples, 1.5% had no AGG positions, 25% had one, 71% had two, and 3% had three. Among the fragile X premutation samples, 63% had no AGG, while 37% had only one AGG. Analysis of premutation samples within fragile X families showed that variation occurred only within the 3' end of the region. Thus, the instability was polar. Controls with > or = 15 pure CGG repeats were associated with the longest alleles of two nearby microsatellites, FRAXAC1 with 20-21 repeats and DXS548 with 202-206 bp and with increased microsatellite heterozygosity. The association of long pure CGG regions, as with fragile X chromosomes, with the longer and more heterozygous microsatellite alleles suggests they may be related mechanistically. Further, our results do not support a recent suggestion that the frequency of fragile X alleles may be increasing. Finally, analysis of a set of nonhuman primate samples showed that long pure CGG tracks are variable in size and are located within the 3' region, which suggests that polar instability within FMR1 is evolutionarily quite old.  相似文献   

13.
Abnormally expanded polyglutamine domains are associated with at least nine neurodegenerative diseases, including Huntington's disease. Expansion of the glutamine region facilitates aggregation of the impacted protein, and aggregation has been linked to neurotoxicity. Studies of synthetic peptides have contributed substantially to our understanding of the mechanism of aggregation because the underlying biophysics of polyglutamine-mediated association can be probed independent of their context within a larger protein. In this report, interrupting residues were inserted into polyglutamine peptides (Q20), and the impact on conformational and aggregation properties was examined. A peptide with two alanine residues formed laterally aligned fibrillar aggregates that were similar to the uninterrupted Q20 peptide. Insertion of two proline residues resulted in soluble, nonfibrillar aggregates, which did not mature into insoluble aggregates. In contrast, insertion of a β-turn template DPG rapidly accelerated aggregation and resulted in a fibrillar aggregate morphology with little lateral alignment between fibrils. These results are interpreted to indicate that (a) long-range nonspecific interactions lead to the formation of soluble oligomers, while maturation of oligomers into fibrils requires conformational conversion and (b) that soluble oligomers dynamically interact with each other, while insoluble aggregates are relatively inert. Kinetic analysis revealed that the increase in aggregation caused by the DPG insert is inconsistent with the nucleation-elongation mechanism of aggregation featuring a monomeric β-sheet nucleus. Rather, the data support a mechanism of polyglutamine aggregation by which monomers associate into soluble oligomers, which then undergo slow structural rearrangement to form sedimentable aggregates.  相似文献   

14.
Macromolecular crowding has been shown to have an exacerbating effect on the aggregation propensity of amyloidogenic proteins; while having an inhibitory effect on the non-amyloidogenic proteins. However, the results concerning aggregation propensity of non-amyloidogenic proteins have not been convincing due to the contrasting effect on holo-LA, which despite being a non-amyloidogenic protein was observed to aggregate under crowded conditions. In the present study, we have extensively characterized the crowding-induced holo-LA aggregates and investigated the possible mechanism responsible for the aggregation process. We discovered that macromolecular crowding reduces the calcium binding affinity of holo-LA resulting in the formation of apo-LA (the calcium-depleted form of holo-LA) leading to aggregate formation. Another finding is that calcium acts as a chaperone capable of inhibiting and dissociating crowding-induced holo-LA aggregates. The study has a direct implication to Alzheimer Disease as the results invoke a new mechanism to prevent Aβ fibrillation.  相似文献   

15.
Wan OW  Chung KK 《PloS one》2012,7(6):e38545
α-Synuclein (α-syn) is a synaptic protein in which four mutations (A53T, A30P, E46K and gene triplication) have been found to cause an autosomal dominant form of Parkinson's disease (PD). It is also the major component of intraneuronal protein aggregates, designated as Lewy bodies (LBs), a prominent pathological hallmark of PD. How α-syn contributes to LB formation and PD is still not well-understood. It has been proposed that aggregation of α-syn contributes to the formation of LBs, which then leads to neurodegeneration in PD. However, studies have also suggested that aggregates formation is a protective mechanism against more toxic α-syn oligomers. In this study, we have generated α-syn mutants that have increased propensity to form aggregates by attaching a CL1 peptide to the C-terminal of α-syn. Data from our cellular study suggest an inverse correlation between cell viability and the amount of α-syn aggregates formed in the cells. In addition, our animal model of PD indicates that attachment of CL1 to α-syn enhanced its toxicity to dopaminergic neurons in an age-dependent manner and induced the formation of Lewy body-like α-syn aggregates in the substantia nigra. These results provide new insights into how α-syn-induced toxicity is related to its aggregation.  相似文献   

16.
Beta-amyloid (Abeta) aggregates at low concentrations in vivo, and this may involve covalently modified forms of these peptides. Modification of Abeta by 4-hydroxynonenal (4-HNE) initially increases the hydrophobicity of these peptides and subsequently leads to additional reactions, such as peptide cross-linking. To model these initial events, without confounding effects of subsequent reactions, we modified Abeta at each of its amino groups using a chemically simpler, close analogue of 4-HNE, the octanoyl group: K16-octanoic acid (OA)-Abeta, K28-OA-Abeta, and Nalpha-OA-Abeta. Octanoylation of these sites on Abeta-(1-40) had strikingly different effects on fibril formation. K16-OA-Abeta and K28-OA-Abeta, but not Nalpha-OA-Abeta, had increased propensity to aggregate. The type of aggregate (electron microscopic appearance) differed with the site of modification. The ability of octanoyl-Abeta peptides to cross-seed solutions of Abeta was the inverse of their ability to form fibrils on their own (i.e. Abeta approximately Nalpha-OA-Abeta>K16-OA-Abeta>K28-OA-Abeta). By CD spectroscopy, K16-OA-Abeta and K28-OA-Abeta had increased beta-sheet propensity compared with Abeta-(1-40) or Nalpha-OA-Abeta. K16-OA-Abeta and K28-OA-Abeta were more amphiphilic than Abeta-(1-40) or Nalpha-OA-Abeta, as shown by lower "critical micelle concentrations" and higher monolayer collapse pressures. Finally, K16-OA-Abeta and K28-OA-Abeta are much more cytotoxic to N2A cells than Abeta-(1-40) or Nalpha-OA-Abeta. The greater cytotoxicity of K16-OA-Abeta and K28-OA-Abeta may reflect their greater amphiphilicity. We conclude that lipidation can make Abeta more prone to aggregation and more cytotoxic, but these effects are highly site-specific.  相似文献   

17.
The Amyloid beta peptide (Abeta) of Alzheimer's diseases (AD) is closely linked to the progressive cognitive decline associated with the disease. Cu2+ ions can induce the de novo aggregation of the Abeta peptide into non-amyloidogenic aggregates and the production of a toxic species. The mechanism by which Cu2+ mediates the change from amyloid material toward Cu2+ induced aggregates is poorly defined. Here we demonstrate that the aggregation state of Abeta1-42 at neutral pH is governed by the Cu2+:peptide molar ratio. By probing amyloid content and total aggregation, we observed a distinct Cu2+ switching effect centered at equimolar Cu2+:peptide ratios. At sub-equimolar Cu2+:peptide molar ratios, Abeta1-42 forms thioflavin-T reactive amyloid; conversely, at supra-equimolar Cu2+:peptide molar ratios, Abeta1-42 forms both small spherical oligomers approximately 10-20 nm in size and large amorphous aggregates. We demonstrate that these insoluble aggregates form spontaneously via a soluble species without the presence of an observable lag phase. In seeding experiments, the Cu2+ induced aggregates were unable to influence fibril formation or convert into fibrillar material. Aged Cu2+ induced aggregates are toxic when compared to Abeta1-42 aged in the absence of Cu2+. Importantly, the formation of dityrosine crosslinked Abeta, by the oxidative modification of the peptide, only occurs at equimolar molar ratios and above. The formation of dityrosine adducts occurs following the initiation of aggregation and hence does not drive the formation of the Cu2+ induced aggregates. These results define the role Cu2+ plays in modulating the aggregation state and toxicity of Abeta1-42.  相似文献   

18.
S100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6. Computational analysis using aggregation predictors Waltz and Zyggregator revealed increased propensity within S100A6 helices HI and HIV. Subsequent analysis of Thioflavin-T binding kinetics under acidic conditions elicited a very fast process with no lag phase and extensive formation of aggregates and stacked fibrils as observed by electron microscopy. Ca2+ exerted an inhibitory effect on the aggregation kinetics, which could be reverted upon chelation. An FT-IR investigation of the early conformational changes occurring under these conditions showed that Ca2+ promotes anti-parallel β-sheet conformations that repress fibrillation. At pH 7, Ca2+ rendered the fibril formation kinetics slower: time-resolved imaging showed that fibril formation is highly suppressed, with aggregates forming instead. In the absence of metals an extensive network of fibrils is formed. S100A6 oligomers, but not fibrils, were found to be cytotoxic, decreasing cell viability by up to 40%. This effect was not observed when the aggregates were formed in the presence of Ca2+. Interestingly, native S1006 seeds SOD1 aggregation, shortening its nucleation process. This suggests a cross-talk between these two proteins involved in ALS. Overall, these results put forward novel roles for S100 proteins, whose metal-modulated aggregation propensity may be a key aspect in their physiology and function.  相似文献   

19.
Aggregation of alpha-synuclein is a key event in several neurodegenerative diseases, including Parkinson disease. Recent findings suggest that oligomers represent the principal toxic aggregate species. Using confocal single-molecule fluorescence techniques, such as scanning for intensely fluorescent targets (SIFT) and atomic force microscopy, we monitored alpha-synuclein oligomer formation at the single particle level. Organic solvents were used to trigger aggregation, which resulted in small oligomers ("intermediate I"). Under these conditions, Fe(3+) at low micromolar concentrations dramatically increased aggregation and induced formation of larger oligomers ("intermediate II"). Both oligomer species were on-pathway to amyloid fibrils and could seed amyloid formation. Notably, only Fe(3+)-induced oligomers were SDS-resistant and could form ion-permeable pores in a planar lipid bilayer, which were inhibited by the oligomer-specific A11 antibody. Moreover, baicalein and N'-benzylidene-benzohydrazide derivatives inhibited oligomer formation. Baicalein also inhibited alpha-synuclein-dependent toxicity in neuronal cells. Our results may provide a potential disease mechanism regarding the role of ferric iron and of toxic oligomer species in Parkinson diseases. Moreover, scanning for intensely fluorescent targets allows high throughput screening for aggregation inhibitors and may provide new approaches for drug development and therapy.  相似文献   

20.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号