首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphodiesterases (PDEs) constitute a superfamily of enzymes that plays an important role in signal transduction by catalysing the hydrolysis of cAMP and cGMP. cDNA encoding PDE7A1 subtype was cloned and a stable recombinant HEK 293 cell line expressing high levels of PDE7A1 was generated. Transient transfection of pCRE-Luc plasmid, harboring luciferase reporter gene into the stable recombinant cell line and subsequent treatment with PDE7 inhibitor, resulted in a dose-dependent increase in luciferase activity. This method provides a simple and sensitive cell-based assay for screening of PDE7 selective inhibitors for the treatment of T cell mediated diseases. Renu Malik and Roop Singh Bora contributed equally to this work.  相似文献   

2.
Large quantities of recombinant proteins are needed for specific therapeutic and diagnostic applications. To achieve high-level expression in eukaryotic cells, the choice of cell line as well as the expression vector is critical. In this report, we demonstrate that a combination of the skeletal muscle cell line, QM7 and a cytomegalovirus promoter-based expression vector can achieve high-level expression of secretory recombinant proteins in eukaryotic cells. We also screened a serum-free medium containing 3 microg/ml insulin suitable for QM7 differentiation and identified a very potent signal peptide from MMP9, which effectively directs secretion of heterologous proteins. The C-terminal hemopexin-like domain of MMP-2, PEX, a powerful candidate for the treatment of diseases associated with neovascularization was expressed in QM7 cells with bioactivity. This skeletal muscle cell-based system may be employed for the production of human proteins of special interests, such as those for structural determination or therapeutical development.  相似文献   

3.
4.
5.
Hexdall L  Zheng CF 《BioTechniques》2001,30(5):1134-8, 1140
While GAL4 fusion activators have been widely used for dissecting signal transduction pathways in transient assays, there has been surprisingly little reported on utilizing cell lines with stably integrated fusion activators. To avoid problems with the efficiency and reproducibility inherent to transient transfection, we describe here the generation and characterization of HeLa reporter cell lines, which contain a stably integrated luciferase gene responsive to stably integrated and constitutively expressed GAL4-CREB or GAL4-Elk1 fusion activators. These cell lines exhibited extremely low basal luciferase expression but robust response to various extracellular stimuli or the expression of signaling molecules that resulted in elevated MAP kinase or PKA activities. This integrated two-component reporter system allows one to focus specifically on particular signaling pathway endpoints and the altered transactivation activity of either Elk1 or CREB. With the procedures described here, many novel cell-based assays can be developed by generating new reporter cell lines with medically important but difficult-to-transfect cell types, and by using different reporter genes or different fusion transactivator genes.  相似文献   

6.
For the identification of modulators of the metabotropic glutamate receptor mGluR7, a functional cell-based high throughput screening (HTS) assay was developed. This assay utilizes the signal transduction pathway of mGluR7, which is negatively coupled to adenylyl cyclase. A cAMP-responsive luciferase reporter gene and rat mGluR7 cDNA were cotransfected into CHO-K1 cells by electroporation. Stable recombinant cells were selected by resistance to the antibiotic G418. Functional selection was carried out by analyzing the effect of the agonist glutamate to reduce elevated cAMP levels after forskolin stimulation. Out of 83 G418-resistant cell clones, the clone with the best functional characteristics was selected. This clone displayed the strongest reduction of forskolin-stimulated cAMP levels. Glutamate (10 mM) decreased cAMP levels, as monitored by luciferase expression, by about 50%, and the more potent agonist L-2-amino-4-phosphonobutyrate resulted in nearly complete reduction, exhibiting an EC(50) of 0.9 mM. The functional response of the clone did not change during cell passages, indicating the stability of this novel recombinant cell line. The luciferase reporter gene assay, which allows easy nonradioactive luminescence detection of mGluR7 activity, was optimized for its application in automated HTS.  相似文献   

7.
Adult skeletal muscle fibers can be categorized into fast and slow twitch subtypes based on specialized contractile and metabolic properties and on distinctive patterns of muscle gene expression. Muscle fiber-type characteristics are dependent on the frequency of motor nerve stimulation and are thought to be controlled by calcium-dependent signaling. The calcium, calmodulin-dependent protein phosphatase, calcineurin, stimulates slow fiber-specific gene promoters in cultured skeletal muscle cells, and the calcineurin inhibitor, cyclosporin A, inhibits slow fiber gene expression in vivo, suggesting a key role of calcineurin in activation of the slow muscle fiber phenotype. Calcineurin has also been shown to induce hypertrophy of cardiac muscle and to mediate the hypertrophic effects of insulin-like growth factor-1 on skeletal myocytes in vitro. To determine whether activated calcineurin was sufficient to induce slow fiber gene expression and hypertrophy in adult skeletal muscle in vivo, we created transgenic mice that expressed activated calcineurin under control of the muscle creatine kinase enhancer. These mice exhibited an increase in slow muscle fibers, but no evidence for skeletal muscle hypertrophy. These results demonstrate that calcineurin activation is sufficient to induce the slow fiber gene regulatory program in vivo and suggest that additional signals are required for skeletal muscle hypertrophy.  相似文献   

8.
9.
10.
Growth hormone (GH) is the main regulator of longitudinal growth before puberty, and treatment with human recombinant (rh) GH can increase muscle strength. Nevertheless, molecular mechanisms responsible remain mostly unknown. Many physiological effects of GH require hormone-mediated changes in gene expression. In an attempt to gain insight into the mechanism of GH action in muscle cells we evaluated the effects of rhGH on gene expression profile in a murine skeletal muscle cell line C2C12. The objective of the work was to identify changes in gene expression in the murine skeletal muscle cell line C2C12 after rGH treatment using microarray assays. C2C12 murine skeletal muscle cell cultures were differentiated during 4 days. After 16?h growing in serum-free medium, C2C12 myotubes were stimulated during 6?h with 500?ng/ml rhGH. Four independent sets of experiments were performed to identify GH-regulated genes. Total RNA was isolated and subjected to analysis. To validate changes candidate genes were analyzed by real-time quantitative polymerase chain reaction. One hundred and fifty-four differentially expressed genes were identified; 90 upregulated and 64 downregulated. Many had not been previously identified as GH-responsive. Real-time PCR in biological replicates confirmed the effect of rGH on 15 genes: Cish, Serpina3g, Socs2, Bmp4, Tnfrsf11b, Rgs2, Tgfbr3, Ugdh, Npy1r, Gbp6, Tgfbi, Tgtp, Btc, Clec3b, and Bcl6. This study shows modifications in the gene expression profile of the C2C12 cell line after rhGH exposure. In vitro and gene function analysis revealed genes involved in skeletal and muscle system as well as cardiovascular system development and function.  相似文献   

11.
12.
In response to extended periods of stretch, skeletal muscle typically exhibits cell hypertrophy associated with sustained increases in mRNA and protein synthesis. Several soluble hypertrophic agonists have been identified, yet relatively little is known as to how mechanical load is converted into intracellular signals regulating gene expression or how increased cell size is maintained. In skeletal muscle, hypertrophy is generally regarded as a beneficial adaptive response to increased workload. In some cases, however, hypertrophy can be detrimental as seen in long-term cardiac hypertrophy. Skeletal muscle wasting (atrophy) is a feature of both inherited and acquired muscle disease and normal aging. Elucidating the molecular regulation of cell size is a fundamental step toward comprehending the complex molecular systems underlying muscle hypertrophy and atrophy. Subtractive hybridization between passively stretched and control murine skeletal muscle tissue identified an mRNA that undergoes increased expression in response to passive stretch. Encoded within the mRNA is an open reading frame of 311 amino acids containing a highly conserved type 1 peroxisomal targeting signal and a serine lipase active center. The sequence shows identity to a family of serine hydrolases and thus is named serine hydrolase-like (Serhl). The predicted three-dimensional structure displays a core alpha/beta-hydrolase fold and catalytic triad characteristic of several hydrolytic enzymes. Endogenous Serhl protein immunolocalizes to perinuclear vesicles as does Serhl-FLAG fusion protein transiently expressed in muscle cells in vitro. Overexpression of Serhl-FLAG has no effect on muscle cell phenotype in vitro. Serhl's expression patterns and its response to passive stretch suggest that it may play a role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli.  相似文献   

13.
14.
15.
To examine the relationship between the cardiac and skeletal muscle gene programs, the current study employs the regulatory (phosphorylatable) myosin light chain (MLC-2) as a model system. Northern blotting, primer extension, and RNase protection studies documented the high level expression of the cardiac MLC-2 mRNA in both mouse cardiac and slow skeletal muscle (soleus). Transgenic mouse lines harboring a 2100- or a 250-base pair rat cardiac MLC-2 promoter/luciferase fusion gene were generated, demonstrating high levels of luciferase activity in cardiac muscle, and only background luminescence in slow skeletal muscle and non-muscle tissues. As assessed by in situ hybridization, immunofluorescence, and luminescence assays of luciferase reporter activity in various regions of the heart, both the endogenous MLC-2 gene and the MLC-2 luciferase fusion gene were expressed exclusively in the ventricular compartment, with expression in the atrium at background levels. Point mutations within the conserved regulatory sites HF-1a and HF-1b significantly cripple ventricular muscle specificity, while mutation of the single E-box site was without effect, suggesting that ventricular muscle-specific expression occurs through an E-box-independent pathway. This study provides direct evidence that the cis regulatory sequences in the cardiac/slow twitch MLC-2 gene which confer cardiac and skeletal muscle-specific expression can be clearly segregated, suggesting that distinct regulatory programs may have evolved to control the tissue-specific expression of this single contractile protein gene in cardiac and skeletal muscle.  相似文献   

16.
Mechanical loading of skeletal muscle results in molecular and phenotypic adaptations typified by enhanced muscle size. Studies on humans are limited by the need for repeated sampling, and studies on animals have methodological and ethical limitations. In this investigation, three-dimensional skeletal muscle was tissue-engineered utilizing the murine cell line C2C12, which bears resemblance to native tissue and benefits from the advantages of conventional in vitro experiments. The work aimed to determine if mechanical loading induced an anabolic hypertrophic response, akin to that described in vivo after mechanical loading in the form of resistance exercise. Specifically, we temporally investigated candidate gene expression and Akt-mechanistic target of rapamycin 1 signalling along with myotube growth and tissue function. Mechanical loading (construct length increase of 15%) significantly increased insulin-like growth factor-1 and MMP-2 messenger RNA expression 21 hr after overload, and the levels of the atrophic gene MAFbx were significantly downregulated 45 hr after mechanical overload. In addition, p70S6 kinase and 4EBP-1 phosphorylation were upregulated immediately after mechanical overload. Maximal contractile force was augmented 45 hr after load with a 265% increase in force, alongside significant hypertrophy of the myotubes within the engineered muscle. Overall, mechanical loading of tissue-engineered skeletal muscle induced hypertrophy and improved force production.  相似文献   

17.
Intestinal gene transfer offers promise as a therapeutic option for treatment of both intestinal and non-intestinal diseases. Recombinant adeno-associated virus serotype 2, rAAV2, based vectors have been utilized to transduce lung epithelial cells in culture and in human subjects. rAAV2 transduction of intestinal epithelial cells, however, is limited both in culture and in vivo. Proteasome-inhibiting agents have recently been shown to enhance rAAV2-mediated transgene expression in airway epithelial cells. We hypothesized that similar inhibition of proteasome-related cellular processes can function to induce rAAV2 transduction of intestinal epithelial cells. Our results demonstrate that combined treatment with proteasome-modulating agents MG101 (N-acetyl-L-leucyl-L-leucyl-L-norleucine) and Doxorubicin synergistically induces rAAV2-mediated luciferase transgene expression by >400-fold in undifferentiated Caco-2 cells. In differentiated Caco-2 monolayers, treatment with MG101 and Doxorubicin induces transduction preferentially from the basolateral cell surface. In addition to Caco-2 cells, treatment with MG101 and Doxorubicin also results in enhanced rAAV2 transduction of HT-29, T84, and HCT-116 human intestinal epithelial cell lines. We conclude that MG101 and Doxorubicin mediate generic effects on intestinal epithelial cells that result in enhanced rAAV2 transduction. Use of proteasome-modulating agents to enhance viral transduction may facilitate the development of more efficient intestinal gene transfer protocols.  相似文献   

18.
19.
20.
The goal of this study was to develop an inducible gene expression system to assess functions of specific proteins in differentiated cultured skeletal muscle. We utilized and modified the ecdysone inducible system because others have used this system to express exogenous genes in vitro and in transgenic animals. A limitation of the commercially-available ecdysone system is its constitutive expression in all tissues. Hence, its application in vivo would result in expression of a cloned gene in undifferentiated and differentiated tissues. To target its expression to muscle, we removed the constitutively-active CMV promoter of pVgRXR and replaced it with a skeletal muscle alpha-actin promoter so that the regulatory features of the system would be expressed in differentiated muscle cells. We transfected our newly designed expression system into L8 muscle myoblasts and established stable cell lines via antibiotic selection. We determined that reporter gene activity was induced by ponasterone A in myotubes, a differentiated muscle phenotype, but not in myoblasts (undifferentiated cells). This proved the validity of the concept of an inducible muscle-specific expression system. We then determined that beta-galactosidase expression was dependent upon the dose of ponasterone A and duration of exposure to inducer. This creates potential to regulate both the level of expression and duration of expression of a cloned gene in differentiated muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号