首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A human liver cDNA expression library in λ-phage gt11 was screened with monoclonal antibodies to rat liver protein-disulfide isomerase / oxidoreductase (EC 5.3.4.1 / 1.8.4.2), also known as glutathione-insulin transhydrogenase (GIT). The nucleotide sequence of the largest cDNA insert (hgit-1) was determined. It contained approx. 1500 basepairs, representing an estimated 65% of the glutathione-insulin transhydrogenase message. The amino-acid sequence deduced from this cDNA insert contains a 7-amino-acid long polypeptide determined by sequencing the active-site fragment isolated from the rat GIT protein. A comparison of the nucleotide sequence of hgit-1 and a previously reported nucleotide sequence of rat glutathione-insulin transhydrogenase cDNA shows that the human hgit-1 clone corresponds to the middle of the transhydrogenase message at amino-acid residue number 275 of the rat protein, and codes for 206 amino-acid residues, including one of the two active-site regions of glutathione-insulin transhydrogenase, a stop codon (TAA), a long 3′-noncoding region of over 800 bases, a polyadenylation signal (AATAA), and a 29 base poly(A) tail. There exists high homology between the human and rat enzymes (94% in the overall amino-acid sequence, with 100% in the active site region and 81% in the nucleotide sequence within the coding portion of hgit-1). As with the rat enzyme, the human enzyme shows some identity with another dithiol-disulfide-exchange protein, Escherichia coli thioredoxin. Like rat cDNA, the human hgit-1 cDNA hybridized to rat mRNA of 2500 bases on a Northern blot. The relative quantitative abundance of GIT mRNA in nine rat tissues studied using hgit-1 as a hybridization probe was found to be in the same order as previously found with the rat cDNA. Thus, the above studies indicate that glutathione-insulin transhydrogenase is a highly conserved protein and that the human hgit-1 cDNA is suitable for use as a probe for further studies on gene regulation of this enzyme.  相似文献   

2.
A synthetic Inter-alpha-Trypsin-Inhibitor (ITI) -specific oligonucleotide probe was used to isolate a clone from a human liver cDNA library. The amino-acid sequence deduced from partial nucleotide sequencing of the corresponding cDNA insert perfectly matched a known ITI sequence, apart from an as yet unreported C-terminal dipeptide. Hybridization on Northern blots evidenced that this cDNA insert originated from an ITI light chain-encoding mRNA whose size was estimated to be 1 300 bases.  相似文献   

3.
A hybridoma cell line secreting monoclonal antibody specific for glutathione-insulin transhydrogenase has been produced by fusing mouse myeloma cells with spleen cells from mice immunized to purified rat liver glutathione-insulin transhydrogenase. The secreted antibody isotypes were found to be: Ig gamma 1 heavy chains and kappa light chains. This monoclonal antibody has been used to screen glutathione-insulin transhydrogenase in various rat tissue extracts (liver, fat, heart, testis, spleen, lung and kidney) following separation on NaDodSO4/urea polyacrylamide disc-gel electrophoresis and electrophoretic transfer to nitrocellulose. Screening with the monoclonal antibody showed the presence of one immunoreactive protein band equal in molecular weight to that of purified rat liver GIT (Mr 53,000) in extracts of all tissues studied and a second immunoreactive protein band of lower molecular weight (Mr 49,000) in spleen and lung tissue extracts. Separation of these two proteins by HPLC using a TSK-DEAE column demonstrated that both proteins exhibit insulin degrading activity. These data indicate that GIT may occur in multiple forms in some tissues.  相似文献   

4.
1. Inhibition of endogenous microsomal NADPH oxidase by CO enables membrane-bound glutathione-insulin transhydrogenase (EC 1.8.4.2) to be assayed conveniently by a linked assay involving NADPH and glutathione reductase (EC 1.6.4.2). 2. The specific activity of the enzyme in rat liver microsomal preparations is of the order of 1 nmol of oxidized glutathione formed/min per mg of membrane protein. 3. The specific activity of the enzyme is comparable in rough and smooth microsomal fractions, and the activity is not affected by treatment with EDTA and the removal of ribosomes from rough microsomal fractions. 4. Membrane-bound glutathione-insulin transhydrogenase is not affected by concentrations of deoxycholate up to 0.5%, whereas protein disulphide-isomerase (EC 5.3.4.1) is drastically inhibited. 5. On these grounds it is concluded that, in rat liver microsomal fractions, glutathione-insulin transhydrogenase and protein disulphide-isomerase activities are not both catalysed by a single enzyme species.  相似文献   

5.
We have studied glutathione-insulin transhydrogenase (GIT) activity in differentiating rat liver during parturition and neonatal growth and during compensatory liver growth. Parturition is characterized by a rapid but transient increase in total (i.e., nonlatent plus latent) hepatic GIT activity resulting from changes in the quantity (Vm) of the enzyme while neonatal growth is characterized by an increase in the nonlatent (active) form which persists until just prior to weaning. During liver regeneration following partial hepatectomy, GIT activity/mg protein is lowest after 12 h of regeneration and then progressively increases exceeding the control levels after 72 h of regeneration. Placenta from near-term rats contain a significant concentration of GIT which is immunologically similar to hepatic GIT.  相似文献   

6.
cDNA clones complementary to MS7-4 (Setoguchi et al. (1988) Somat. Cell Mol. Genet. 14, 427-438) from a mouse macrophage cDNA library were separated. Sequence analysis of these clones demonstrated that the longest cDNA clone, MS7X, had a 1366 bp insert and high homology with that of the human CD14 gene (Ferrero and Goyert (1988) Nucleic Acids Res. 16, 4173). Using the MS7X cDNA probe, cDNA clones were separated from cDNA libraries constructed from a human macrophage cell line and macrophages. The total cDNA sequence was 1364 bp in length, with an open reading frame of 1125 nucleotides matching that of the human CD14 gene except for one nucleotide difference. The amino-acid sequence (mouse CD14), deduced from the nucleotide sequence of the MS7X insert consisted of 351 amino-acid residues with a high leucine content (17.66%) and five putative N-glycosylation sites, and in vitro translation predicted a protein of molecular mass of 37.5 kDa. Human CD14 had 356 amino-acid residues, with high leucine content (15.5%), and contained four putative N-glycosylation sites. Mouse CD14 showed 13 building blocks, of which internal nine blocks have a conserved leucine motif and significant homology with human leucine-rich alpha 2-glycoprotein.  相似文献   

7.
The isolation and characterization of a human apolipoprotein B 100-specific cDNA clone (lambda gt-B1) containing a 1321 base pairs (bp) spanning insert is described. It encodes the 3'-nontranslated 281 bp long region up to the polyadenylation site and 1040 bp of the C-terminal coding region of 345 amino-acid residues of human apo B 100 and the stop codon. The lambda gt-B1 cDNA clone has been isolated from a human hepatoma cDNA expression library by immunoscreening using affinity-purified polyclonal anti apo B 100 antibodies. The nucleotide sequence of the apo B 100 insert has been determined. A part of the polypeptide sequence derived from this nucleotide sequence was identical with the amino-acid sequence obtained by protein sequencing of a purified cyanogen bromide fragment of apo B 100. The fusion protein consisting of beta-galactosidase and the 345 amino-acid residue long C-terminus of apo B 100 had an apparent molecular mass of 148 kDa in NaDodSO4 polyacrylamide gel electrophoresis. In Northern blot hybridization analysis the insert of the apo B 100-cDNA clone hybridized to a 20 to 22 kb mRNA from adult human liver.  相似文献   

8.
Nucleotide sequence of a cDNA clone for human aldolase B   总被引:5,自引:0,他引:5  
Two specific clones for human aldolase B were isolated from a human liver cDNA library using a rat aldolase B cDNA probe. The clones were identified by positive hybridization-selection and one of them was sequenced. The 127 C-terminal residues of the human protein were deduced from this nucleotide sequence analysis. They showed 92% homology with the corresponding previously published amino-acid sequence of rat liver aldolase B.  相似文献   

9.
The occurrence of insulin-degrading activity in the liver of the obese hyperglycemic mouse (ob/ob) and its litter mate has been studied. The trichloroacetic acid-soluble product formed from insulin upon incubation with liver homogenate was identified as the A chain of insulin. In Ouchterlony double-diffusion experiments with antibody to purified rat liver glutathione-insulin transhydrogenase, mouse liver homogenate and the microsomal fraction each gave a single precipitation band of identity with the purified rat liver enzyme. These results indicate that the insulin-degrading activity present in the mouse liver is, in fact, glutathione-insulin transhydrogenase. Subcellular distribution studies of glutathione-insulin transhydrogenase and marker enzymes indicate that the transhydrogenase is located primarily in the microsomal fraction of mouse liver homogenate. The ob/ob mouse, which is a genetic mutant characterized by obesity, hyperinsulinism and resistance to the hypoglycemic action of insulin, contains hepatic glutathione-insulin transhydrogenase activity (per mg microsomal protein) markedly higher (40--60%) than its lean litter mates. However, a major portion of the increased hepatic enzyme in the ob/ob mouse occurs in a latent state; the increased amount of enzyme either is unavailable or is nonfunctional, although the ob/ob mouse still contains more of the functional form than the lean mouse. Thus, the results are consistent with the suggestion that the hepatic glutathione-insulin transhydrogenase is probably under a feedback control by circulating insulin.  相似文献   

10.
Structure of rodent helix-destabilizing protein revealed by cDNA cloning   总被引:50,自引:0,他引:50  
A cDNA library of newborn rat brain poly(A+) RNA in lambda gt 11 was screened with a synthetic oligonucleotide probe corresponding to a five amino acid sequence in the N-terminal region of the calf helix-destabilizing protein, UP1. Six positive phage were isolated after testing 2 X 10(5) recombinants, and each phage was plaque purified. Four of these phage clones were positive with a second oligonucleotide probe corresponding to a 5 amino acid sequence in the C-terminal region of calf UP1; one of the clones positive with both probes was selected for detailed study. This phage, designated lambda HDP-182, contained a 1706-base pair cDNA insert corresponding to an mRNA with a poly(A) sequence at the 3' terminus and a single open reading frame starting 63 bases from the 5' terminus and extending 988 bases. The 3' untranslated region of the mRNA contained 718 bases, including an AAUAAA signal 21 bases from the poly(A) sequence and a 16-residue poly(U) sequence flanked on each side by oligonucleotide repeats. Primer extension analysis of newborn rat brain poly(A+) RNA suggested that the cDNA insert in lambda HDP-182 was full length except for about 35 nucleotide residues missing from the 5' end untranslated region, and Northern blot analysis revealed one relatively abundant mRNA species of approximately the same size as the cDNA insert. The 988-residue open reading frame in the cDNA predicted a 34,215-dalton protein of 320 amino acids. Residues 2 through 196 of this rat protein are identical to the 195-residue sequence of the calf helix-destabilizing protein, UP1. The 124-amino acid sequence in the C-terminal portion of the 34,215-dalton protein is not present in purified calf UP1. This 124-residue sequence has unusual amino acid content in that it is 11% asparagine, 15% serine, and 40% glycine and consists of 16 consecutive oligopeptide repeats. Computer-derived secondary structure predictions for the 34,215-dalton protein revealed two distinct domains consisting of residues 1 through approximately 196 and residues approximately 197 to 320, respectively.  相似文献   

11.
Nucleotide sequence of a bovine protamine cDNA   总被引:5,自引:0,他引:5  
The nucleotide sequence of a 441-base cDNA encoding the bovine protamine has been determined. This insert, isolated from a bovine spermatid-specific cDNA library, encodes a polypeptide of 50 amino acids of which 26 are arginine, 7 are cysteine, and 2 are tyrosine. The insert contains the complete 3'-noncoding region of 150 bases and most of the 5'-noncoding region. The predicted amino-acid sequence of bovine protamine is about 96% homologous to ram protamine, 76% to boar protamine, 64% to mouse protamine 1 and 52% to human protamine 1 and contains the central, highly basic domain of four arginine clusters found in the trout protamines. Our results show that bovine protamine is 50 amino-acid residues in length and not 47 residues as previously published (Coelingh, J.P. et al. (1972) Biochim. Biophys. Acta 285, 1-14).  相似文献   

12.
The protein sequencing of tryptic peptides from purified human lecithin: cholesterol acyltransferase (LCAT) identified sufficient amino-acid sequence to construct a corresponding mixed oligonucleotide probe. This was used to screen an adult human cDNA liver library, from which incomplete cDNA clones were isolated. The DNA sequence of these clones allows the prediction of the entire amino-acid sequence of the mature LCAT enzyme. The mature protein consists of 416 amino acids and contains several marked stretches of hydrophobic residues and four potential glycosylation sites. The cDNA probe detects LCAT mRNA sequences approx. 1500 bases long in human liver, but not intestine, RNA. The cDNA probe was used to isolate LCAT genomic recombinants from a human genomic library. Southern blotting data, and restriction site mapping, suggest that there is a single human LCAT structural gene between 4.3 and 5.5 kb in size.  相似文献   

13.
The occureence of insulin-degrading activity in the liver of the obese hyperglycemic mouse (ob/ob) and its litter mate has been studied. The trichloroacetic acid-soluble product formed from insulin upon incubation with liver homogenate was identified as the A chain of insulin. In Ouchterlony double-diffusion experiments with antibody to purified rat liver glutathione-insulin transhydrogenase, mouse liver homogenate and the microsomal fraction each gave a single precipitation band of identity with the purified rat liver enzyme. These results indicate that the insulin-degrading activity preseny in the mouse liver is, in fact, glutathione-insulin transhydrogenase. Subcellular distribution studies of glutathione-insulin transhydrogenase and marker enzymes indicate that the transhydrogenase is located primarily in the microsomal fraction of mouse liver homogenate.The ob/ob mouse, which is a genetic mutant characterized by obesity, hyper-insulinism and resistance to the hypoglycemic action of insulin, contains hepatic glutathione-insulin transhydrogenase activity (per mg microsomal protein) markedly higher (40–60%) than its lean litter mates. However, a major portion of the increased hepatic enzyme in the ob/ob mouse occurs in a latent state; the increased amount of enzyme either is unavailable or is nonfunctional, although the ob/ob mouse still contains more of the functional form than the lean mouse. Thus, the results are consistent with the suggestion that the hepatic glutathione-insulin transhydrogenase is probably under a feedback control by circulating insulin.  相似文献   

14.
Five monoclonal antibodies specific for glutathione-insulin transhydrogenase were characterized. None of the monoclonal antibodies cross-reacted with another insulin-degrading enzyme, neutral thiopeptidase. The isotype of four antibodies was IgG1 and of the fifth IgG2b. Affinity studies, competitive binding studies and immunoblot analysis of CNBr and trypsin cleavage products of glutathione-insulin transhydrogenase demonstrated that the four IgG1 antibodies were directed to an epitope of the enzyme which was distinct from the epitope recognized by the IgG2b antibody. Inhibition studies indicated that each monoclonal antibody, when added singly to glutathione-insulin transhydrogenase, was unable to inhibit the insulin-degrading activity of the enzyme. However, when monoclonal antibodies directed against separate epitopes of glutathione-insulin transhydrogenase were presented together (i.e., the IgG2b with any one of the four IgG1 antibodies), a loss in enzymatic activity was noted. Immunoblot analysis of rat organ extracts with the IgG1 antibodies demonstrated one immunoreactive protein band of Mr 56,000 in all tissues examined (liver, fat, pancreas and kidney) except the spleen, which demonstrated two immunoreactive protein bands of Mr 56,000 and 51,000. The same immunoblots, when probed with the IgG2b antibody, demonstrated the same immunoreactive protein banding pattern as above plus an additional immunoreactive protein band of Mr 67,000 in all tissues. Studies with spleen extracts from steptozotocin-induced diabetic rats demonstrated that there was a loss of the 51,000 immunoreactive band in diabetes. This 51,000 protein was restored upon insulin treatment of the diabetic rats and nullified upon concomitant administration of cycloheximide or actinomycin D with insulin. Immunoblots of human liver, adipose and skeletal muscle extracts indicated that each monoclonal antibody cross-reacted with the human form of the enzyme which had a molecular weight of Mr 63,000; a second minor immunoreactive band of 67,000 was detected with the IgG2b antibody. The physiological significance of additional molecular forms of the enzyme (i.e., 67,000 and 51,000) remains to be determined.  相似文献   

15.
cDNA for mRNA of tuna growth hormone (GH) was cloned by screening a cDNA library constructed from tuna pituitary gland poly(A)+ RNA. The nucleotide sequence of cDNA (911 bases) revealed an open reading frame of 615 nucleotides, including a sequence (51 bases) for a possible secretory protein leader peptide. Noncoding regions were found in the nucleotide sequences up- (5′-terminal: 65 bases) and down- (3′-terminal: 231 bases) stream of the open reading frame. An amino-acid sequence deduced from the nucleotide sequence of the cDNA was identical with that determined in the purified tuna GH. Tuna GH was composed of 187 amino acids, and had a calculated molecular weight of 21275. Amino-acid sequencing showed that there was one possible N-glycosylation site at Asn (Asn-Cys-Thr). Tuna GH showed amino-acid sequence homologies with chum salmon (67%), yellow tail (90%) and with human (32%) growth hormones.  相似文献   

16.
The localization of the protein-disulfide interchange enzyme, glutathione-insulin transhydrogenase (GIT), in rat and mouse pancreas was studied by protein A-gold immunocytochemistry, immunodiffusion, and assay of enzymatic activity. Immunocytochemistry on tissue sections using antibody to GIT and protein A-gold complex indicated the presence of GIT in alpha and beta cells in islets as well as acinar cells. The beta cells in obese (ob/ob) hyperinsulinemic mice showed increased GIT immunoreactivity. In both alpha and beta cells, GIT immunoreactive sites were associated predominantly with secretory granules. In pancreas from rats injected with glibenclamide, the degranulated beta cells contained GIT immunoreactive sites on the cisternal surface of the rough endoplasmic reticulum (RER). In acinar cells, the RER, Golgi elements, condensing vacuoles, and zymogen granules possessed GIT immunoreactive sites as did mitochondria. Immunocytochemistry on sections of isolated subcellular fractions showed that GIT was associated with different membranes. The enzymatic activity of GIT was found in the following order: Golgi elements greater than mitochondria greater than microsomes greater than zymogen granules greater than cytosol. In Ouchterlony immunodiffusion tests, each subcellular fraction showed a precipitin band which was continuous with that of purified GIT, a result indicating the presence of immunologically identical GIT in all fractions.  相似文献   

17.
A full-length cDNA clone that codes for glucose transporter protein was isolated from a rabbit brain cDNA library by using synthetic oligonucleotide probe derived from the sequence of human glucose transporter cDNA. The coding region shared 93.2% nucleotide and 97.0% amino-acid similarities with those of human glucose transporter and 89.4% nucleotide and 97.4% amino-acid similarities with those of rat transporter. Northern blot analysis revealed that glucose transporter mRNA is most abundant in the placenta and that it is also abundant in the brain. The fat tissue, heart, liver, and skeletal muscle of adult rats contained a very small amount of mRNA, while heart, liver, skeletal muscle and kidney of fetal rats contained a very high amount of glucose transporter mRNA. These results suggest that this type of glucose transporter might be closely related with cell proliferation and tissue development.  相似文献   

18.
1. Protein disulphide-isomerase and glutathione-insulin transhydrogenase activities were assayed in parallel through a conventional purification of protein disulphide-isomerase from ox liver. 2. Throughout a series of purification steps (differential centrifugation, acetone extraction, (NH4)2SO4 precipitation and ion-exchange chromatography), the two activities appeared in the same fractions but were purified to different extents. 3. The final sample was 143-fold purified in protein disulphide-isomerase but only 10-fold purified in glutathione-insulin transhydrogenase; nevertheless the two activities in this preparation were not resolved by high-resolution isoelectric focusing and both showed pI4.65. 4. In a partially purified preparation containing both activities, glutathione-insulin transhydrogenase was far more sensitive to heat denaturation than was protein disulphide-isomerase; conversely protein disulphide-isomerase was more sensitive to inactivation by deoxycholate. 5. The data are inconsistent with a single enzyme being responsible for all the protein disulphide-isomerase and glutathione-insulin transhydrogenase activity of ox liver. It is suggested that several similiar thiol-protein disulphide oxidoreductases of overlapping specificities may better account for the data.  相似文献   

19.
20.
Cloning and sequencing of a cDNA encoding the rat Bcl-2 protein   总被引:14,自引:0,他引:14  
A rat cDNA encoding the Bcl-2 protein was cloned and sequenced. The primary amino-acid sequence deduced from the nucleotide sequence reveals a 236-aa protein having extensive homology with the mouse (95%), human (87%) and chicken (71%) Bcl-2 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号