首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(6):652-654
Tocotrienols are a group of natural vitamin E compounds with patent antitumoral effects, mostly based on their ability to induce apoptosis in cancer cells. In activated pancreatic stellate cells (PSCs) we have determined that tocotrienols elicit a dramatic mitochondrial destabilization followed by initiation of non-necrotic forms of programmed cell death, namely apoptosis and autophagy. PSCs are the main cell type involved in the generation of pancreatic fibrosis, and their removal is critical to limit the fibrogenic process. Noteworthy, tocotrienol death-promoting actions are exclusively directed to activated PSCs, but not to their quiescent counterparts nor to terminally differentiated acinar cells. Here, we hypothesize that the transformed phenotype of PSCs may include “activated” mitochondria, which can be used by tocotrienols to trigger autophagic and apoptotic signaling. We propose that mitochondria are the cornerstone of cell sensitivity to tocotrienols, and suggest possible mechanisms, that may be interconnected, on how tocotrienols may govern mitochondrial death pathways.

Addendum to:

Tocotrienols Induce Apoptosis and Autophagy in Rat Pancreatic Stellate Cells through the Mitochondrial Death Pathway

M. Rickmann, E.C. Vaquero, J.R. Malagelada and X. Molero

Gastroenterology 2007; 132:2518-32  相似文献   

2.
An increased intracellular methylglyoxal (MGO) under hyperglycemia led to pancreatic beta cell death. However, its mechanism in which way with MGO induced beta cell death remains unknown. We investigated both high glucose and MGO treatment significantly inclined intracellular MGO concentration and inhibited cell viability in vitro. MGO treatment also triggered intracellular advanced glycation end products (AGEs) formation, declined mitochondrial membrane potential (MMP), increased oxidative stress and the expression of ER stress mediators Grp78/Bip and p-PERK; activated mitochondrial apoptotic pathway, which could mimic by Glo1 knockdown. Aminoguanidine (AG), a MGO scavenger, however, prevented AGEs formation and MGO-induced cell death by inhibiting oxidative stress and ER stress. Furthermore, both antioxidant N-acetylcysteine (NAC) and ER stress inhibitor 4-phenylbutyrate (4-PBA) could attenuate MGO-induced cell death through ameliorating ER stress. MGO treatment down-regulated Ire1α, a key ER stress mediator, increased JNK phosphorylation and activated mitochondrial apoptosis; down-regulated Bcl-2 expression which could be attenuated by the JNK inhibitor SP600125 and further inhibited cytochrome c leakage from mitochondria and blocked the conversion of pro caspase 3 into cleaved caspase 3, all these might contribute to the inhibition of INS-1 cell apoptosis. Ire1α down-regulation by Ire1α siRNAs mimicked MGO-induced cytotoxicity by activating the JNK phosphorylation and mitochondrial apoptotic pathway. In summary, we demonstrated that increased intracellular MGO induced cytotoxicity in INS-1 cells primarily by activating oxidative stress and further triggering mitochondrial apoptotic pathway, and ER stress-mediated Ire1α-JNK pathway. These findings may have implication on new mechanism of glucotoxicity-mediated pancreatic beta-cell dysfunction.  相似文献   

3.
Mitochondria fragment prior to caspase activation during many pathways of apoptosis. Inhibition of the machinery that normally regulates mitochondrial morphology in healthy cells inhibits the fission that occurs during apoptosis and actually delays the process of cell death. Interestingly, there are certain parallels between mitochondrial fission and bacterial sporulation. As bacterial sporulation can be considered a stress response we suggest that a primordial stress response of endosymbiont mitochondrial progenitors may have been adopted for the stress response of early eukaryotes. Thus, the mitochondrial fission process may represent an early stress response of primitive mitochondria that could have integrated the stress signals and acted as an initial sensor for the eukaryotic response system. The fact that mitochondria fragment during apoptosis using the machinery descended from or that superceded the bacterial stress response of sporulation is consistent with this hypothesis. This hypothesis would explain why what is generally considered the "power house" of the cell came to integrate the cell death response and regulate apoptosis.  相似文献   

4.
Apoptosis: a mitochondrial perspective on cell death   总被引:5,自引:0,他引:5  
Mitochondria play an important role in both the life and death of cells. The past 7-8 years have seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Mitochondria have, next to their function in respiration, an important role in apoptotic signaling pathway. Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Apoptosis can be initiated by a wide array of stimuli, including multiple signaling pathways that, for the most part, converge at the mitochondria. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also "gatekeepers" that ultimately determine the fate of the cell. Malfunctioning at any level of the cell is eventually translated in the release of apoptogenic factors from the mitochondrial intermembrane space resulting in the organized demise of the cell. These mitochondrial factors may contribute to both caspase-dependent and caspase-independent processes in apoptotic cell death. In addition, several Bcl-2 family members and other upstream proteins also contribute to and regulate the apoptosis. In this review, we attempt to summarize our current view of the mechanism that leads to the influx and efflux of many proteins from/to mitochondria during apoptosis.  相似文献   

5.
Mitochondria,the killer organelles and their weapons   总被引:35,自引:0,他引:35  
Apoptosis is a cell-autonomous mode of death that is activated to eradicate superfluous, damaged, mutated, or aged cells. In addition to their role as the cell's powerhouse, mitochondria play a central role in the control of apoptosis. Thus, numerous pro-apoptotic molecules act on mitochondria and provoke the permeabilization of mitochondrial membranes. Soluble proteins contained in the mitochondrial intermembrane space are released through the outer membrane and participate in the organized destruction of the cell. Several among these lethal proteins can activate caspases, a class of cysteine proteases specifically activated in apoptosis, whereas others act in a caspase-independent fashion, by acting as nucleases (e.g., endonuclease G), nuclease activators (e.g., apoptosis-inducing factor), or serine proteases (e.g., Omi/HtrA2). In addition, mitochondria can generate reactive oxygen species, following uncoupling and/or inhibition of the respiratory chain. The diversity of mitochondrial factors participating in apoptosis emphasizes the central role of these organelles in apoptosis control and unravels novel mechanisms of cell death execution.  相似文献   

6.
The pancreatic cancer remains a fatal disease for the majority of patients. Cisplatin has displayed significant cytotoxic effects against the pancreatic cancer cells, however the underlying mechanisms remain inconclusive. Here, we found that cisplatin mainly induced non-apoptotic death of the pancreatic cancer cells (AsPC-1 and Capan-2), which was associated with a significant p53 activation (phosphorylation and accumulation). Further, activated p53 was found to translocate to mitochondria where it formed a complex with cyclophilin D (Cyp-D). We provided evidences to support that mitochondrial Cyp-D/p53 complexation might be critical for cisplatin-induced non-apoptotic death of pancreatic cancer cells. Inhibition of Cyp-D by its inhibitor cyclosporine A (CsA), or by shRNA-mediated knockdown suppressed cisplatin-induced pancreatic cancer cell death. Both CsA and Cyp-D knockdown also disrupted the Cyp-D/p53 complex formation in mitochondria. Meanwhile, the pancreatic cancer cells with p53 knockdown were resistant to cisplatin. On the other hand, HEK-293 over-expressing Cyp-D were hyper-sensitive to cisplatin. Interestingly, camptothecin (CMT)-induced pancreatic cancer cell apoptotic death was not affected CsA or Cyp-D knockdown. Together, these data suggested that cisplatin-induced non-apoptotic death requires mitochondria Cyp-D-p53 signaling in pancreatic cancer cells.  相似文献   

7.
Pan caspase inhibitors are potentially powerful cell-protective agents that block apoptosis in response to a wide variety of insults that cause tissue degeneration. In many conditions, however, the blockade of apoptosis by caspase inhibitors does not permit long-term cell survival, but the reasons are not entirely clear. Here we show that the blockade of apoptosis by Boc.Aspartyl(O-methyl)CH2F can result in the highly selective elimination of the entire cohort of mitochondria, including mitochondrial DNA, from both neurons and HeLa cells, irrespective of the stimulus used to trigger apoptosis. In cells that lose their mitochondria, the nuclear DNA, Golgi apparatus, endoplasmic reticulum, centrioles, and plasma membrane remain undamaged. The capacity to remove mitochondria is both specific and regulated since mitochondrial loss in neurons is completely prevented by the expression of the antiapoptotic protein Bcl-2 and partially suppressed by the autolysosomal inhibitor bafilomycin. Cells without mitochondria are more tolerant to an anaerobic environment but are essentially irreversibly committed to death. Prevention of mitochondrial loss may be crucial for the long-term regeneration of tissues emerging from an apoptotic episode in which death was prevented by caspase blockade.  相似文献   

8.
In type 2 diabetes mellitus, pancreatic stellate cells (PSCs) are present within and surrounding pancreatic islets and may cause progressive fibrosis and deterioration of pancreatic beta cell function. However, it is unknown whether pancreatic beta cells influence the biological behavior of PSCs. In the present study, we examined the impact of pancreatic beta cells on the proliferation, migration and extracellular matrix (ECM) production of PSCs. PSCs were treated with conditioned media from INS-1 cells (supernatant, SN). Although the proliferation of PSCs incubated with INS-1-SN was increased compared to control, INS-1-SN treatment induced matrix metalloproteinase-2 activity and reduced the production of ECM and TGF-β1. In addition, PSCs treated with INS-1-SN reduced the secretion of cytokines that are known to mediate pancreatic beta cell death, such as FADD, Fas, IFN-γ, IL-1, TNF-α, and TRAIL. Our findings suggest that pancreatic beta cells may ameliorate islet fibrosis and the progression of islet dysfunction.  相似文献   

9.
The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called "cancer stem cells", within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the "stemness" of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.  相似文献   

10.
Apoptosis is an active and tightly regulated form of cell death, which can also be considered a stress-induced process of cellular communication. Recent studies reveal that the lipid network within cells is involved in the regulation and propagation of death signalling. Despite the vast growth of our current knowledge on apoptosis, little is known of the specific role played by lipid molecules in the central event of apoptosis—the piercing of mitochondrial membranes. Here we review the information regarding changes in mitochondrial lipids that are associated with apoptosis and discuss whether they may be involved in the permeabilization of mitochondria to release their apoptogenic factors, or just lie downstream of this permeabilization leading to the amplification of caspase activation. We focus on the earliest changes that physiological apoptosis induces in mitochondrial membranes, which may derive from an upstream alteration of phospholipid metabolism that reverberates on the mitochondrial re-modelling of their characteristic lipid, cardiolipin. Hopefully, this review will lead to an increased understanding of the role of mitochondrial lipids in apoptosis and also help revealing new stress sensing mechanisms in cells. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

11.
The present study investigated the mechanism of mouse pancreatic acinar cell apoptosis induced by H2S in an in vitro system, using isolated pancreatic acini. Treatment of pancreatic acini with 10 µM NaHS (a donor of H2S) for 3 h caused phosphatidylserine externalization as shown by annexin V binding, an indicator of early stages of apoptosis. This treatment also resulted in the activation of the caspase cascade and major changes at the mitochondrial level. Caspase-3, -8, and -9 activities were stimulated by H2S treatment. Treatment with inhibitors of caspase-3, -8, and -9 significantly inhibited H2S-induced phosphatidylserine externalization as shown by reduced annexin V staining. The mitochondrial membrane potential was collapsed in H2S-treated acini as evidenced by fluorescence microscopy and quantitative analysis. Furthermore, the treatment of acini with H2S caused the release of cytochrome c by the mitochondria. To investigate the mechanism underlying pancreatic acinar cell apoptosis, we also characterized the protein expression of a range of molecules that are each known to influence the apoptotic pathway. Among proapoptotic proteins, Bax expression was activated in H2S-treated cells but not Bid, and the antiapoptotic proteins Bcl-XL and Bcl-2 did not show any activation in pancreatic acinar cell apoptosis. The death effector domain-containing protein Flip is downregulated in H2S-treated acini. These results demonstrate the induction of pancreatic acinar cell apoptosis in vitro by H2S and the involvement of both mitochondrial and death receptor pathways in the process of apoptosis. caspase; H2S; mitochondria; Bcl-2; Flip  相似文献   

12.
With the recognition of the central role of mitochondria in apoptosis, there is a need to develop specific tools to manipulate mitochondrial function within cells. Here we report on the development of a novel antioxidant that selectively blocks mitochondrial oxidative damage, enabling the roles of mitochondrial oxidative stress in different types of cell death to be inferred. This antioxidant, named mitoQ, is a ubiquinone derivative targeted to mitochondria by covalent attachment to a lipophilic triphenylphosphonium cation through an aliphatic carbon chain. Due to the large mitochondrial membrane potential, the cation was accumulated within mitochondria inside cells, where the ubiquinone moiety inserted into the lipid bilayer and was reduced by the respiratory chain. The ubiquinol derivative thus formed was an effective antioxidant that prevented lipid peroxidation and protected mitochondria from oxidative damage. After detoxifying a reactive oxygen species, the ubiquinol moiety was regenerated by the respiratory chain enabling its antioxidant activity to be recycled. In cell culture studies, the mitochondrially localized antioxidant protected mammalian cells from hydrogen peroxide-induced apoptosis but not from apoptosis induced by staurosporine or tumor necrosis factor-alpha. This was compared with untargeted ubiquinone analogs, which were ineffective in preventing apoptosis. These results suggest that mitochondrial oxidative stress may be a critical step in apoptosis induced by hydrogen peroxide but not for apoptosis induced by staurosporine or tumor necrosis factor-alpha. We have shown that selectively manipulating mitochondrial antioxidant status with targeted and recyclable antioxidants is a feasible approach to investigate the role of mitochondrial oxidative damage in apoptotic cell death. This approach will have further applications in investigating mitochondrial dysfunction in a range of experimental models.  相似文献   

13.
Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA) depleted βLox5 cells, or βLox5 ρ(0) cells. βLox5 ρ(0) cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ(0) cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways.  相似文献   

14.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway can be activated by a variety of stress stimuli such as UV radiation and osmotic stress. The regulation and role of this pathway in death receptor-induced apoptosis remain unclear and may depend on the specific death receptor and cell type. Here we show that binding of Fas ligand to Fas activates p38 MAPK in CD8+ T cells and that activation of this pathway is required for Fas-mediated CD8+ T-cell death. Active p38 MAPK phosphorylates Bcl-xL and Bcl-2 and prevents the accumulation of these antiapoptotic molecules within the mitochondria. Consequently, a loss of mitochondrial membrane potential and the release of cytochrome c lead to the activation of caspase 9 and, subsequently, caspase 3. Therefore, the activation of p38 MAPK is a critical link between Fas and the mitochondrial death pathway and is required for the Fas-induced apoptosis of CD8+ T cells.  相似文献   

15.
Mitochondrial dysfunctions have been associated with neuronal apoptosis and are characteristic of neurodegenerative conditions. Caspases play a central role in apoptosis; however, their involvement in mitochondrial dysfunction-induced neuronal apoptosis remains elusive. In the present report using rotenone, a complex I inhibitor that causes mitochondrial dysfunction, we determined the initiator caspase and its role in cell death in primary cultures of cortical neurons from young adult mice (1-2 months old). By pretreating the cells with a cell-permeable, biotinylated pan-caspase inhibitor that irreversibly binds to and traps the active caspase, we identified caspase-2 as an initiator caspase activated in rotenone-treated primary neurons. Loss of caspase-2 inhibited rotenone-induced apoptosis; however, these neurons underwent a delayed cell death by necrosis. We further found that caspase-2 acts upstream of mitochondria to mediate rotenone-induced apoptosis in neurons. The loss of caspase-2 significantly inhibited rotenone-induced activation of Bid and Bax and the release of cytochrome c and apoptosis inducing factor from mitochondria. Rotenone-induced downstream activation of caspase-3 and caspase-9 were also inhibited in the neurons lacking caspase-2. Autophagy was enhanced in caspase-2 knock-out neurons after rotenone treatment, and this response was important in prolonging neuronal survival. In summary, the present study identifies a novel function of caspase-2 in mitochondrial oxidative stress-induced apoptosis in neurons cultured from young adult mice.  相似文献   

16.
Mitochondria damage checkpoint in apoptosis and genome stability   总被引:3,自引:0,他引:3  
  相似文献   

17.
Stress in mitochondria or the endoplasmic reticulum (ER) independently causes cell death. Recently, it was reported that ER stress causes mitochondrial dysfunction via p53-upregulated modulator of apoptosis (PUMA). However, little is known regarding the mitochondria molecules that mediate ER dysfunction. The present study revealed that tumor necrosis factor receptor-associated protein 1 (TRAP1), which localizes in the mitochondria, is associated with the unfolded protein response (UPR) in the ER. TRAP1 knockdown activated the ER-resident caspase-4, which is activated by ER stress, to induce cell death in humans. However, TRAP1 knockdown cells did not show a significant increase in the level of cell death at least within 24 h after early phase of ER stress in comparison with that of the control cells. This finding could be attributed to a number of reasons. TRAP1 knockdown failed to activate caspase-9, which is activated by activated caspase-4. In addition, TRAP1 knockdown increased the basal level of GRP78/BiP expression, which protects cells, and decreased the basal level of C/EBP homologous protein (CHOP) expression, which induces cell death, even under ER stress. Thus, the present study revealed that mitochondria could be a potential regulator of the UPR in the ER through mitochondrial TRAP1.  相似文献   

18.
Lee JW  Kim WH  Yeo J  Jung MH 《Molecules and cells》2010,30(6):545-549
Mitochondrial dysfunction induces apoptosis of pancreatic β-cells and leads to type 2 diabetes, but the mechanism involved in this process remains unclear. Chronic endoplasmic reticulum (ER) stress plays a role in the apoptosis of pancreatic β-cells; therefore, in current study, we investigated the implication of ER stress in mitochondrial dysfunction-induced β-cells apoptosis. Metabolic stress induced by antimycin or oligomycin was used to impair mitochondrial function in MIN6N8 cells, which are mouse pancreatic β-cells. Impaired mitochondria dysfunction increased ER stress proteins such as p-eIF2α, GRP78 and GRP 94, as well as ER stress-associated apoptotic factor, CHOP, and activated JNK. AMP-activated protein kinase (AMPK) was also activated under mitochondria dysfunction by metabolic stress. However, the inhibition of AMPK by treatment with compound C, inhibitor of AMPK, and overexpression of mutant dominant negative AMPK (AMPKK45R) blocked the induction of ER stress, which was consist-ent with the decreased β-cell apoptosis and increase of insulin content. Furthermore, mitochondrial dysfunction increased the expression of the inducible nitric oxide synthase (iNOS) gene and the production of nitric oxide (NO), but NO production was prevented by compound C and mutant dominant negative AMPK (AMPK-K45R). Moreover, treatment with 1400W, which is an inhibitor of iNOS, prevented ER stress and apoptosis induced by mitochondrial dysfunction. Treatment of MIN6N8 cells with lipid mixture, physiological conditions of impaired mitochondria function, activated AMPK, increased NO production and induced ER stress. Collectively, these data demonstrate that mitochondrial dysfunction activates AMPK, which induces ER stress via NO production, resulting in pancreatic β-cells apoptosis.  相似文献   

19.
Nitric oxide (NO) can trigger either necrotic or apoptotic cell death. We have used PC12 cells to investigate the extent to which NO-induced cell death is mediated by mitochondria. Addition of NO donors, 1 mM S-nitroso-N-acetyl-DL-penicillamine (SNAP) or 1 mM diethylenetriamine-NO adduct (NOC-18), to PC12 cells resulted in a steady-state level of 1-3 microM: NO, rapid and almost complete inhibition of cellular respiration (within 1 min), and a rapid decrease in mitochondrial membrane potential within the cells. A 24-h incubation of PC12 cells with NO donors (SNAP or NOC-18) or specific inhibitors of mitochondrial respiration (myxothiazol, rotenone, or azide), in the absence of glucose, caused total ATP depletion and resulted in 80-100% necrosis. The presence of glucose almost completely prevented the decrease in ATP level and the increase in necrosis induced by the NO donors or mitochondrial inhibitors, suggesting that the NO-induced necrosis in the absence of glucose was due to the inhibition of mitochondrial respiration and subsequent ATP depletion. However, in the presence of glucose, NO donors and mitochondrial inhibitors induced apoptosis of PC12 cells as determined by nuclear morphology. The presence of apoptotic cells was prevented completely by benzyloxycarbonyl-Val-Ala-fluoromethyl ketone (a nonspecific caspase inhibitor), indicating that apoptosis was mediated by caspase activation. Indeed, both NO donors and mitochondrial inhibitors in PC12 cells caused the activation of caspase-3- and caspase-3-processing-like proteases. Caspase-1 activity was not activated. Cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) decreased the activity of caspase-3- and caspase-3-processing-like proteases after treatment with NO donors, but was not effective in the case of the mitochondrial inhibitors. The activation of caspases was accompanied by the release of cytochrome c from mitochondria into the cytosol, which was partially prevented by cyclosporin A in the case of NO donors. These results indicate that NO donors (SNAP or NOC-18) may trigger apoptosis in PC12 cells partially mediated by opening the mitochondrial permeability transition pores, release of cytochrome c, and subsequent caspase activation. NO-induced apoptosis is blocked completely in the absence of glucose, probably due to the lack of ATP. Our findings suggest that mitochondria may be involved in both types of cell death induced by NO donors: necrosis by respiratory inhibition and apoptosis by opening the permeability transition pore. Further, our results indicate that the mode of cell death (necrosis versus apoptosis) induced by either NO or mitochondrial inhibitors depends critically on the glycolytic capacity of the cell.  相似文献   

20.
BACKGROUND: It is unclear whether expression of newly described mitochondrial Apo2.7 molecules (7A6 antigen) is specific for apoptosis or may also occur in necrosis. METHODS: We incubated human lymphocytes with the apoptosis-inducing mistletoe lectin (ML) I and the cell membrane-permeabilizing viscotoxins (VT), and measured cell death-associated changes by flow cytometry. RESULTS: In ML I-treated lymphocytes, Apo2.7 expression and caspase-3 activation was recognized within 24 h. In VT-treated cells, we observed an Apo2.7 expression with low fluorescence level, while active caspase-3 and DNA fragments (TUNEL) were not detected within 24 h. In these cells, caspase-3 activation was recognized 48 h later. As a major subset of ML-treated cells expressing Apo2.7 molecules did not activated caspase-3, while all caspase-3(+) cells did express Apo2.7, one may suggest that the caspase pathway is activated secondarily to mitochondrial events. CONCLUSIONS: Expression of Apo2.7 is sensitive marker of cell death but may not be specific for apoptosis alone as it can be detected also in cells treated with cell membrane-permeabilizing toxins. On the other hand, this expression may be the consequence of an induction of distinct "death signals" resulting in apoptosis later on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号