首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A high molecular-weight c-type cytochrome was purified from Alcaligenes faecalis ATCC 8750. Its weight was 40,000 daltons by sodium dodecyl sulfate-gel electrophoresis. Heme content was determined to be one heme per 40,000 daltons. Proton nuclear magnetic resonance-NMR-spectroscopy determined that the ferrous form is low spin. The detection of a methyl resonance at -3 ppm in the ferrous form indicated that methionine is a heme ligand in this state. The NMR spectrum of the ferric form at pH 7.2 revealed hyperfine shifted methyl resonances at 67.79, 63.17, 57.71, and 50.46 ppm. The large downfield shifts observed are indicative of high spin character. The ferric spectrum was pH-sensitive, indicating two pH-linked structural transitions with estimated pKs at 6.0 and 10.5. The first is interpreted as due to the ionization of a heme propionate. The second is interpreted as the acquisition of a strong field ligand and the subsequent conversion to a low spin ferric form. The ferricytochrome did not form complexes with cyanide, azide, or fluoride at pH 5.2 or 7.9.  相似文献   

2.
T Tanaka  N T Yu    C K Chang 《Biophysical journal》1987,52(5):801-805
We report resonance Raman studies of the iron-carbon bond stretching vibrations, nu(Fe-CN), in sterically hindered and unhindered heme (FeIII)-CN- complexes. The sterically hindred "strapped hemes" are equipped with a covalently linked 13-, 14-, or 15-atom hydrocarbon chain across one face of the heme; these are called FeSP-13, FeSP-14, and FeSP-15, respectively. These straps would presumably exert a sideway shearing strain to force the linear ligands (e.g., CN- and CO) to be tilted and/or bent. The shorter the chain length, the weaker the ligand binding affinity because of a greater steric hindrance. This study reveals that the nu(Fe-CN) frequency decreases as the chain length is decreased, in contrast with the CO complexes, where the nu(Fe-CO) frequency increases as the chain length is decreased. For the heme-CN- complexes (with N-methylimidazole as a base), the nu(Fe-CN) frequencies are: heme 5 (unhindered), 451 cm-1; FeSP-15, 447 cm-1; FeSP-14, 447 cm-1; FeSP-13, 445 cm-1. For the heme-CO complexes (with N-methylimidazole as a base), the nu(Fe-CO) frequencies are: heme 5, 495 cm-1; FeSP-15, 509 cm-1; FeSP-14, 512 cm-1; FeSP-13, 514 cm-1 (Yu, N.-T., E. A. Kerr, B. Ward, and C. K. Chang, 1983, Biochemistry, 22:4534-4540). We have also studied the cyanide complexes with three different bases (pyridine, N-methylimidazole and 1,2-dimethylimidazole), and found that the trans-effect of cyanide complex is different from that of CO complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The kinetics of the reversible binding of cyanide by the ferric cytochrome c' from Chromatium vinosum have been studied over the pH range 6.9-9.6. The reaction is extremely slow at neutral pH compared to the reactions of other high-spin ferric heme proteins with cyanide. The observed bimolecular rate constant at pH 7.0 is 2.25 X 10(-3) M-1 s-1, which is approximately 10(7)-fold slower than that for peroxidases, approximately 10(5)-fold slower than those for hemoglobin and myoglobin, and approximately 10(2)-fold to approximately 10(3)-fold slower than that recently reported for the Glycera dibranchiata hemoglobin, which has anomalously slow cyanide rate constants of 4.91 X 10(-1), 3.02 X 10(-1), and 1.82 M-1 s-1 for components II, III, and IV, respectively [Mintorovitch, J., & Satterlee, J. D. (1988) Biochemistry 27, 8045-8050; Mintorovitch, J., Van Pelt, D., & Satterlee, J. D. (1989) Biochemistry 28, 6099-6104]. The unusual ligand binding property of this cytochrome c' is proposed to be associated with a severely hindered heme coordination site. Cyanide binding is also characterized by a nonlinear cyanide concentration dependence of the observed rate constant at higher pH values, which is interpreted as involving a change in the rate-determining step associated with the formation of an intermediate complex between the cytochrome c' and cyanide prior to coordination. The pH dependence of both the binding constant for the formation of the intermediate complex and the association rate constant for the subsequent coordination to the heme can be attributed to the ionization of HCN, where cyanide ion binding is the predominant process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
M Sono 《Biochemistry》1990,29(6):1451-1460
The binding of a number of ligands to the heme protein indolamine 2,3-dioxygenase has been examined with UV-visible absorption and with natural and magnetic circular dichroism spectroscopy. Relatively large ligands (e.g., norharman) which do not readily form complexes with myoglobin and horseradish peroxidase (HRP) can bind to the dioxygenase. Except for only a few cases (e.g., 4-phenylimidazole) for the ferric dioxygenase, a direct competition for the enzyme rarely occurs between the substrate L-tryptophan (Trp) and the ligands examined. L-Trp and small heme ligands (CN-,N3-,F-) markedly enhance the affinity of each other for the ferric enzyme in a reciprocal manner, exhibiting positive cooperativity. For the ferrous enzyme, L-Trp exerts negative cooperativity with some ligands such as imidazoles, alkyl isocyanides, and CO binding to the enzyme. This likely reflects the proximity of the Trp binding site to the heme iron. Other indolamine substrates also exert similar but smaller cooperative effects on the binding of azide or ethyl isocyanide. The pH dependence of the ligand affinity of the dioxygenase is similar to that of myoglobin rather than that of HRP. These results suggest that indolamine 2,3-dioxygenase has the active-site heme pocket whose environmental structure is similar to, but whose size is considerably larger than, that of myoglobin, a typical O2-binding heme protein. Although the L-Trp affinity of the ferric cyanide and ferrous CO enzyme varies only slightly between pH 5.5 and 9.5, the unligated ferric and ferrous enzymes have considerably higher affinity for L-Trp at alkaline pH than at acidic pH. L-Trp binding to the ferrous dioxygenase is affected by an ionizable residue with a pKa value of 7.3.  相似文献   

5.
Electron paramagnetic resonance (EPR) and optical spectra are used as probes of the heme and its ligands in ferric and ferrous leghemoglobin. The proximal ligand to the heme iron atom of ferric soybean leghemoglobin is identified as imidazole by comparison of the EPR of leghemoglobin hydroxide, azide, and cyanide with the corresponding derivatives of human hemoglobin. Optical spectra show that ferric soybean leghemoglobin near room temperature is almost entirely in the high spin state. At 77 K the optical spectrum is that of a low spin compound, while at 1.6 K the EPR is that of a low spin form resembling bis-imidazole heme. Acetate binds to ferric leghemoglobin to form a high spin complex as judged from the optical spectrum. The EPR of this complex is that of high spin ferric heme in a nearly axial environment. The complexes of ferrous leghemoglobin with substituted pyridines exhibit optical absorption maxima near 685 nm, whose absorption maxima and extinctions are strongly dependent on the nature of the substitutents of the pyridine ring; electron withdrawing groups on the pyridine ring shift the absorption maxima to lower energy. A crystal field analysis of the EPR of nicotinate derivatives of ferric leghemoblobin demonstrates that the pyridine nitrogen is also bound to the heme iron in the ferric state. These findings lead us to picture leghemoglobin as a somewhat flexible molecule in which the transition region between the E and F helices may act as a hinge, opening a small amount at higher temperature to a stable configuration in which the protein is high spin and can accommodate exogenous ligand molecules and closing at low temperature to a second stable configuration in which the protein is low spin and in which close approach of the E helix permits the distal histidine to become the principal sixth ligand.  相似文献   

6.
Circular dichroism (CD) spectroscopy has been used to probe the active site of bacterial ferric cytochrome P-450CAM. The endogenous sixth ligand to the heme iron has been displaced by an extensive series of exogenous oxygen, nitrogen, sulfur and other neutral and anionic donor ligands in an attempt to examine systematically the steric and electronic factors that influence the coupling of the heme chromophore to its protein environment. General trends for each ligand class are reported and discussed. Both the wavelengths and the intensities of the CD bands vary with ligand type and structure. All but one of the complexes exhibit negative CD maxima in their delta and Soret bands. Comparison to ferric myoglobin-thiolate complexes indicates that the negative sign observed for the cytochrome P-450 spectra is not a property of the thiolate fifth ligand, but rather arises from a different interaction of the cytochrome P-450 heme with its protein environment. Complexes with neutral oxygen donors display CD spectra that most closely resemble the spectrum of the native low-spin enzyme. Hyperporphyrin (split Soret) cytochrome P-450 complexes with thiolates, phosphines and cyanide trans to cysteinate have complex CD spectra, reflecting the intrinsic non-degeneracy of the Soret pi pi transitions. The extensive work presented herein provides an empirical foundation for use in analyzing the interaction of heme chromophores with their protein surroundings, not only for the cytochrome P-450 monooxygenases but also for heme proteins in general.  相似文献   

7.
Fatty acid alpha-hydroxylase from Sphingomonas paucimobilis is a hydrogen peroxide-dependent cytochrome P450 (P450) enzyme (P450(SPalpha)). In this study, heme-ligand exchange reactions of P450(SPalpha) were investigated using the optical spectroscopic method and compared with those of various P450s. Alkylamines (C >/= 5) induced changes in the spectrum of ferric P450(SPalpha) to one typical of a nitrogenous ligand-bound low-spin form of ferric P450, although their affinities were lower than those for other P450s, and a substrate, laurate, did not interfere with the binding in contrast with in the cases of other P450s. Other compounds having a nitrogen donor atom to the heme iron of P450, including pyridine or 1-methylimidazole, induced no change in the spectrum of P450(SPalpha) in either the ferric or ferrous state. Practically no spectral change was observed on the addition of alkyl isocyanides to ferric P450s. On the other hand, cyanide induced a change in the spectrum of ferric P450(SPalpha) to one characteristic of cyanide-bound form of ferric P450. The affinity of cyanide increased when the substrate was added, in contrast with in the cases of other P450s. Ferrous P450(SPalpha) combined with CO and alkyl isocyanides, and the affinity for CO was of the same order of magnitude as in the cases of other P450s. These findings suggest a unique heme environment of P450(SPalpha), in which most compounds usually acting as external ligands of ferric P450s are prevented from gaining access to the heme iron of P450(SPalpha). The unique properties of the hydroxylase reaction catalyzed by P450(SPalpha), where an oxygen atom of hydrogen peroxide but not of molecular oxygen is utilized and incorporated into a fatty acid at its alpha position, is possibly related with such a specific heme environment of this P450. A possible mechanism for the peroxygenase reaction of P450(SPalpha) is proposed.  相似文献   

8.
M Ikeda-Saito 《Biochemistry》1987,26(14):4344-4349
The ligand binding properties of spleen myeloperoxidase, a peroxidase formerly called "the spleen green hemeprotein", were studied as functions of temperature and pH, using chloride and cyanide as exogenous ligands. Ligand binding is influenced by a proton dissociable group with a pKa of 4. The protonated, uncharged form of cyanide binds to the unprotonated form of the enzyme, while chloride ion binds to the enzyme when this group is protonated. In both cyanide and chloride binding, the pH-dependent change in the apparent ligand affinity is due to a change in the apparent association rate with pH. The proton dissociable group on the enzyme involved in ligand binding has a delta H value of about 8 kcal . mol-1. The present results suggest that this ionizable group is the imidazole group of a histidine residue located near the ligand binding site.  相似文献   

9.
M Sono  J H Dawson  K Hall  L P Hager 《Biochemistry》1986,25(2):347-356
Equilibrium binding studies of exogenous ligands and halides to the active site heme iron of chloroperoxidase have been carried out from pH 2 to 7. Over twenty ligands have been studied including C, N, O, P, and S donors and the four halides. As judged from changes in the optical absorption spectra, direct binding of the ligands to the heme iron of ferric or ferrous chloroperoxidase occurs in all cases; this has been ascertained for the ferric enzyme in several cases through competition experiments with cyanide. All of the ligands except for the halides, nitrate, and acetate form exclusively low-spin complexes in analogy to results obtained with the spectroscopically related protein, cytochrome P-450-CAM [Sono, M., & Dawson, J.H. (1982) J. Biol. Chem. 257, 5496-5502]. The titration results show that, for the ferric enzyme, (i) weakly acidic ligands (pKa greater than 3) bind to the enzyme in their neutral (protonated) form, followed by deprotonation upon ligation to the heme iron. In contrast, (ii) strongly acidic ligands (pKa less than 0) including SCN-, NO3-, and the halides except for F- likely bind in their anionic (deprotonated) form to the acid form of the enzyme: a single ionizable group on the protein with a pKa less than 2 is involved in this binding. For the ferrous enzyme, (iii) a single ionizable group with the pKa value of 5.5 affects ligand binding. These results reveal that chloroperoxidase, in spite of the previously established close spectroscopic and heme iron coordination structure similarities to the P-450 enzymes, clearly belongs to the hydroperoxidases in terms of its ligand binding properties and active site heme environment. Magnetic circular dichroism studies indicate that the alkaline form (pH 9.5) of ferric chloroperoxidase has an RS-ferric heme-N donor ligand coordination structure with the N donor likely derived from histidine imidazole.  相似文献   

10.
Spectroscopic evidence is presented which demonstrates the binding of cyanide to the ferric cytochrome c' from Chromatium vinosum. The cytochrome was shown to bind one equivalent of cyanide with an equilibrium constant of 2.1 X 10(4) at pH 7.0 and 25 degrees C. This finding represents the first observation of the binding of an anionic ligand to the heme iron in a ferric cytochrome c'. These results suggest that the binding site of the ferric Chromatium cytochrome c' may be significantly more accessible than previously indicated.  相似文献   

11.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.  相似文献   

12.
BACKGROUND: The hemoglobins of the sea lamprey are unusual in that cooperativity and sensitivity to pH arise from an equilibrium between a high-affinity monomer and a low-affinity oligomer. Although the crystal structure of the monomeric cyanide derivative has previously been determined, the manner by which oligomerization acts to lower the oxygen affinity and confer a strong Bohr effect has, until now, been speculative. RESULTS: We have determined the crystal structure of deoxygenated lamprey hemoglobin V by molecular replacement to 2.7 A resolution, in a crystal form with twelve protomers in the asymmetric unit. The subunits are arranged as six essentially identical dimers, with a novel subunit interface formed by the E helices and the AB corner using the standard hemoglobin helical designations. In addition to nonpolar interactions, the interface includes a striking cluster of four glutamate residues. The proximity of the interface to ligand-binding sites implicates a direct effect on ligand affinity. CONCLUSIONS: Comparison of the deoxy structure with that of the cyanide derivative revealed conformational changes that appear to be linked to the functional behavior. Oligomerization is coupled with a movement of the first half of the E helix by up to 1.0 A towards the heme, resulting in steric interference of ligand binding to the deoxy structure. The Bohr effect seems to result from proton uptake by glutamate residues as they are buried in the interface. Unlike human and mollusc hemoglobins, in which modulation of function is due to primarily proximal effects, regulation of oxygen affinity in lamprey hemoglobin V seems to depend on changes at the distal (ligand-binding) side of the heme group.  相似文献   

13.
R Makino  R Chiang  L P Hager 《Biochemistry》1976,15(21):4748-4754
The oxidation-reduction potential of chloroperoxidase, an enzyme which catalyzes peroxidative chlorination, bromination, and iodination reactions, has been investigated. In addition to catalyzing biological halogenation reactions, chloroperoxidase is unusual in that the carbon monoxide complex of ferrous chloroperoxidase shows the typical long wavelength Soret absorption associated with P-450 hemoproteins. The pH dependence of the chloroperoxidase oxidation-reduction potential shows a discontinuity around pH 4.7. Similarly, measurements of the affinity of ferrous chloroperoxidase for carbon monoxide monitored both by spectroscopic and potentiometric titration exhibit a discontinuity in the pH 4.7 region. Oxidation-reduction potential measurements on chloroperoxidase in a CO atmosphere also show a discontinuous pH profile. These results suggest that ferrous chloroperoxidase undergoes reversible modification at low pH and that these changes are reflected in the oxidation-reduction potential. The oxidation-reduction potential of chloroperoxidase at pH 6.9 is - 140 mV, close to that measured for cytochrome P-450cam in the presence of substrate. The oxidation-reduction potential of chloroperoxidase at pH 2.7, the pH optimum for enzymatic chlorination, is +150 mV. The oxidation-reduction potentials of the halide complexes of chloroperoxidase (chloride, bromide, and iodide) are essentially identical with the potential measurements on the native enzyme. These observations suggest that, although halide anions bind to the enzyme, they probably do not bind as an axial ligand to the heme ferric iron.  相似文献   

14.
The two green hemoproteins isolated from bovine erythrocytes (form I and form II) have been characterized as to spectral, electrochemical, and chemical properties. The absorption spectra of the isolated hemoproteins are typical of high spin ferric states. Reduction of the hemoproteins yields high spin ferrohemoproteins. Complexation of the ferrohemoproteins with CO and the ferrihemoproteins with cyanide yields low spin complexes, demonstrating the presence of an exchangeable weak field ligand in both the ferrous and ferric states of the hemoproteins. The differences in position and intensity of the absorption peaks of the visible spectra allow the two forms to be distinguished from one another. The midpoint potential of forms I and II were found to be +0.075 and +0.019 V, respectively, at pH 6.4 and +0.038 and -0.005 V, respectively, at pH 7.0. This is consistent with the gaining of 1 proton/electron during the reduction. The Nernst plot reveals an unusual 0.5-electron transfer, whereas a quantitative titration demonstrates a 1-electron transfer. Form I binds cyanide more tightly than form II (KD of 84 and 252 micrometer, respectively). The observed spectral, electrochemical, and ligand-binding differences between forms I and II can be explained in terms of a greater electron-withdrawing ability of the side chains of the heme of form I relative to the heme of form II.  相似文献   

15.
The reason for the presence of hemoglobin-like molecules in insects, such as Drosophila melanogaster, that live in fully aerobic environments has yet to be determined. Heme endogenous hexacoordination (where HisE7 and HisF8 axial ligands to the heme Fe atom are both provided by the protein) is a recently discovered mechanism proposed to modulate O(2) affinity in hemoglobins from different species. Previous results have shown that D. melanogaster hemoglobin 1 (product of the glob1 gene) displays heme endogenous hexacoordination in both the ferrous and ferric states. Here we present kinetic data characterizing the exogenous cyanide ligand binding process, and the three-dimensional structure (at 1.4 A resolution) of the ensuing cyano-met D. melanogaster hemoglobin. Comparison with the crystal structure of the endogenously hexacoordinated D. melanogaster hemoglobin shows that the transition to the cyano-met form is supported by conformational readjustment in the CD-D-E region of the protein, which removes HisE7 from the heme. The structural and functional features of D. melanogaster hemoglobin are examined in light of previous results achieved for human and mouse neuroglobins and for human cytoglobin, which display heme endogenous hexacoordination. The study shows that, despite the rather constant value for cyanide association rate constants for the ferric hemoproteins, different distal site conformational readjustments and/or heme sliding mechanisms are displayed by the known hexacoordinate hemoglobins as a result of exogenous ligand binding.  相似文献   

16.
Cyanide is one of the few diatomic ligands able to interact with the ferric and ferrous heme-Fe atom. Here, the X-ray crystal structure of the cyanide derivative of ferric Mycobacterium tuberculosis truncated hemoglobin-N (M. tuberculosis trHbN) has been determined at 2.0 A (R-general = 17.8% and R-free = 23.5%), and analyzed in parallel with those of M. tuberculosis truncated hemoglobin-O (M. tuberculosis trHbO), Chlamydomonas eugametos truncated hemoglobin (C. eugametos trHb), and sperm whale myoglobin, generally taken as a molecular model. Cyanide binding to M. tuberculosis trHbN is stabilized directly by residue TyrB10(33), which may assist the deprotonation of the incoming ligand and the protonation of the outcoming cyanide. In M. tuberculosis trHbO and in C. eugametos trHb the ligand is stabilized by the distal pocket residues TyrCD1(36) and TrpG8(88), and by the TyrB10(20) - GlnE7(41) - GlnE11(45) triad, respectively. Moreover, kinetics for cyanide binding to ferric M. tuberculosis trHbN and trHbO and C. eugametos trHb, for ligand dissociation from the ferrous trHbs, and for the reduction of the heme-Fe(III)-cyanide complex have been determined, at pH 7.0 and 20.0 degrees C. Despite the different heme distal site structures and ligand interactions, values of the rate constant for cyanide binding to ferric (non)vertebrate heme proteins are similar, being influenced mainly by the presence in the heme pocket of proton acceptor group(s), whose function is to assist the deprotonation of the incoming ligand (i.e., HCN). On the other hand, values of the rate constant for the reduction of the heme-Fe(III)-cyanide (non)vertebrate globins span over several orders of magnitude, reflecting the different ability of the heme proteins considered to give productive complex(es) with dithionite or its reducing species SO(2)(-). Furthermore, values of the rate constant for ligand dissociation from heme-Fe(II)-cyanide (non)vertebrate heme proteins are very different, reflecting the different nature and geometry of the heme distal residue(s) hydrogen-bonded to the heme-bound cyanide.  相似文献   

17.
We present a 1.59-A resolution crystal structure of reduced Paracoccus pantotrophus cytochrome cd(1) with cyanide bound to the d(1) heme and His/Met coordination of the c heme. Fe-C-N bond angles are 146 degrees for the A subunit and 164 degrees for the B subunit of the dimer. The nitrogen atom of bound cyanide is within hydrogen bonding distance of His(345) and His(388) and either a water molecule in subunit A or Tyr(25) in subunit B. The ferrous heme-cyanide complex is unusually stable (K(d) approximately 10(-6) m); we propose that this reflects both the design of the specialized d(1) heme ring and a general feature of anion reductases with active site heme. Oxidation of crystals of reduced, cyanide-bound, cytochrome cd(1) results in loss of cyanide and return to the native structure with Tyr(25) as a ligand to the d(1) heme iron and switching to His/His coordination at the c-type heme. No reason for unusually weak binding of cyanide to the ferric state can be identified; rather it is argued that the protein is designed such that a chelate-based effect drives displacement by tyrosine of cyanide or a weaker ligand, like reaction product nitric oxide, from the ferric d(1) heme.  相似文献   

18.
Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H2O2 compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H2O2 and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H2O2 and HCN while features that inhibit substrate ionization slow the reactions.  相似文献   

19.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1987,26(14):4535-4540
Interactions of cholesterol analogues and inhibitors with the heme moiety of cytochrome P-450scc were examined by resonance Raman spectroscopy. The Raman spectra of ferric cytochrome P-450scc complexed with inhibitors such as cyanide, phenyl isocyanide, aminoglutethimide, and metyrapone were characteristic of low-spin state and were very similar. However, the effect of exchange of the sixth ligand from the oxygen atom (ferric low-spin state) to the nitrogen atom upon aminoglutethimide and metyrapone binding was seen as down-frequency shifts of the v3 band from 1503 to 1501 and 1502 cm-1, respectively, while cyanide and phenyl isocyanide binding caused an up-frequency shift of the v3 band to 1505 cm-1. The effects of cholesterol analogues [22(R)-hydroxycholesterol, 22(S)-hydroxycholesterol, 22-ketocholesterol, 20(S)-hydroxycholesterol, and 25-hydroxycholesterol] on a Fe2+-CO stretching frequency of cytochrome P-450scc in ferrous CO form were examined. The 22(R)-hydroxycholesterol complex could not give a clear Fe2+-CO stretching Raman band due to a strong photodissociability. 22(S)-Hydroxycholesterol and 25-hydroxycholesterol complexes gave the Raman bands at 487 and 483 cm-1, respectively, whereas 20(S)-hydroxycholesterol and 22-ketocholesterol complexes gave Fe2+-CO stretching frequencies (478 cm-1) almost identical with that without substrate (477 cm-1). These findings suggest the existence of the following physiologically important natures of the cytochrome P-450scc active site: (1) there is a strong steric interaction between heme-bound carbon monoxide and the 22(R)-hydroxyl group or the 22(R)-hydrogen of the steroid side chain and (2) the hydroxylation at the 20S position may cause a conformational change of the side-chain group relative to the heme.  相似文献   

20.
The ethylisocyanide equilibria of all the five known hemoglobins M, namely Hb M Iwate (alpha287 Tyrbeta2), Hb M Boston (alpha258 Tyrbeta2), Hb M Hyde Park (alpha2beta292 Tyr), Hb M Saskatoon (alpha2beta263 tyr), and Hb M Milwaukee-I (alpha2beta267 Glu), were studied both in the half-ferric and fully reduced heme states. In the half-ferric state, no heme-heme interaction was observed for Hb M Iwate, Hb M Boston, and Hb M Hyde Park, but Hb M Saskatoon and Hb M Milwaukee-I show small but definite heme-heme interaction with Hill's n of 1.3. The beta chain mutants, Hb M Hyde Park and Hb M Saskatoon, have almost normal affinity for ethylisocyanide and a normal Bohr effect, whereas the alpha chain mutants, Hb M Iwate and Hb M Boston, have abnormally low affinity and almost no Bohr effect. Hb M Milwaukee-I showed a large Bohr effect and low affinity. These results are consistent qualitatively with those on oxygen equilibria reported previously. In the fully reduced state, in which all four hemes were in the ferrous state and capable of binding ethylisocyanide distinct differences were found in the extent of heme-heme interaction. Namely, the n values for proximal histidine mutants, Hb M Iwate and Hb M Hyde Park, were 1.1 and 1.0, respectively, whereas the distal histidine mutants, Hb M Boston and Hb M Saskatoon, showed high n values of 2.4 and 1.6, respectively. Hb M Milwaukee-I also exhibited a high n value of 2.0 The ethylisocyanide affinity of the four histidine mutants was high compared with that of Hb A, while that for Hb M Milwaukee-I was almost normal. All five Hbs M had approximately normal magnitudes of Bohr effect. In the half-ferric state, the proximal and distal histidine mutants of the same chain showed similar affinity for ethylisocyanide and Bohr effect, rather different from those of the mutants of the opposite chain. These differences seem to be derived from the difference of abnormal bonding of ferric iron to tyrosine or glutamic acid. On the other hand, the reduction of iron, which abolished the abnormal bonding and made all of the chains capable of binding ligand, extinguished the differences of alpha and beta chains, and the effect of amino acid side chains close to iron on ligand binding properties became clear. Proximal histidine, which is considered to trigger the transition between the T and R states, seems to be essential to the heme-heme interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号