首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated cDNA clones encoding the core protein of PG-Lb, proteoglycan which has been shown to be preferentially expressed in the zone of flattened chondrocytes of the developing chick limb cartilage (Shinomura, T., Kimata, K., Oike, Y., Yano, S., and Suzuki, S. (1984) Dev. Biol. 103, 211-220). The deduced amino acid sequence from the cDNA analysis indicates the presence of consensus leucine-rich repeats which are present in other small proteoglycans, decorin, biglycan, and fibromodulin. However, the homology analysis revealed that chick PG-Lb showed a higher homology (about 50% in the region containing leucine-rich repeats) to human osteoinductive factor, OIF, rather than to the other small proteoglycans. Furthermore, 6 cysteine residues are detected in both PG-Lb and OIF with invariant relative positions. Therefore, such an evolutionarily conserved structure in the PG-Lb core protein might be involved in some important biological functions of this molecule. In close relation to the structural similarity to OIF, the unique expression of PG-Lb in the ossifying area of cartilage suggested the possible participation of this proteoglycan in osteogenic processes.  相似文献   

2.
The size and immunological reactivity of the primary gene products of a small non-aggregating dermatan sulfate proteoglycan from bovine and monkey arterial smooth muscle cells were examined after cell-free translation of mRNA. Antisera against the dermatan sulfate proteoglycans from bovine articular cartilage, DSPG II [Rosenberg et al. J. Biol. Chem. 260, 6304 (1985)] and human skin fibroblasts [Glossl et al. J. Biol. Chem. 259, 14144 (1984)] were used to show that the unmodified smooth muscle precursor core protein was immunologically related to both the cartilage and fibroblast core proteins. The size of the precursor core proteins within each species was identical regardless of the tissue source. Comparison of the precursor core proteins synthesized by primate and bovine cells revealed that the bovine core proteins were approximately 1500 Da larger than the primate core proteins as determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. A similar size difference was observed when the mature core proteins of monkey smooth muscle cells and bovine articular chondrocytes were compared after removal of the glycosaminoglycan chains. These results indicate that arterial smooth muscle cells synthesize a dermatan sulfate proteoglycan whose core protein is similar to, if not the same as, the cartilage and fibroblast dermatan sulfate proteoglycan core proteins. These core proteins may be encoded by the same gene that has diverged in size during speciation.  相似文献   

3.
Our recent studies have shown that chick embryo epiphyseal cartilage synthesizes three distinct species of proteoglycan (PG-H, PG-Lb, and PG-Lt) which are analogous in having glycosaminoglycan side chains of the chondroitin (dermatan) sulfate type but different from one another in regard to the structure of core protein. In the present report, the expression of PG-H and PG-Lb has been studied in developing chick hind limbs (stages 19-33), using antibodies specific for these substances in indirect immunofluorescence. At the onset of cartilage morphogenesis (stage 24), PG-H became recognizable in the cartilage primordia, whereas a parallel section stained for PG-Lb showed no reaction. The first evidence of PG-Lb appearance was seen in a stage 28 cartilage (e.g., tibia) in which the cells in the middiaphysis became elongated in a direction perpendicular to the long axis of the cartilage. The PG-Lb fluorescence was confined to the zone of these flattened, disc-like cells, whereas the fluorescence for PG-H was uniformly distributed throughout the cartilage. With further development of cartilage (stage 29 approximately), the zone of flattened cells spread proximally and distally, and simultaneously large hypertrophied cells appeared at the diaphyseal region. During these zonal changes of cell morphology, the PG-Lb fluorescence remained restricted to the zone of flattened cells. Parallel sections stained for PG-H, in contrast, showed an evenly distributed pattern of the PG-H fluorescence throughout the cartilage. The results indicate that the appearance of PG-Lb is closely associated with the zonal changes of cell shape and orientation along the proximal-distal axis of the developing limb cartilage, and further suggest that the flattened chondrocytes in this particular zone have undergone additional changes in gene expression to form an extracellular matrix of still another chemical property.  相似文献   

4.
Endocytosis and subsequent degradation of iduronic acid-rich small dermatan sulfate proteoglycan from fibroblast secretions were studied in human fibroblasts. Upon endocytosis of [3H]leucine- and [35S]sulfate-labeled proteoglycan release of free leucine was 10 to 15 times more rapid than that of inorganic sulfate. Within approximately 3 h a steady state was approached between transport of proteoglycan to the compartment of core protein degradation and release of free leucine. No such steady state could be found with respect to the dermatan sulfate chains. In the presence of benzyloxycarbonyl-Phe-Ala-diazomethylketone or of other SH-protease inhibitors the degradation of the protein moiety of endocytosed proteoglycan was much less inhibited than the degradation of the polysaccharide chain. Benzyloxycarbonyl-Phe-Ala-diazomethylketone did not affect the degradation of dermatan sulfate chains taken up by fluid phase endocytosis and the activities of all known dermatan sulfate-degrading enzymes. Percoll gradient centrifugation indicated that also in the presence of the protease inhibitor the partially degraded proteoglycan accumulated in dense lysosomes. The isolation of intracellular dermatan sulfate peptides and molecular size determinations of endocytosed dermatan sulfate proteoglycan supported the conclusion that a critical proteolytic step is required before the dermatan sulfate chain becomes accessible to hydrolytic enzymes.  相似文献   

5.
A 1.6-kb cDNA clone was isolated by screening a library prepared from chick corneal mRNA with a cDNA clone to bovine decorin. The cDNA contained an open reading frame coding for a M(r) 39,683 protein. A 19-amino-acid match with sequence from the N-terminus of core protein from the corneal chondroitin/dermatan sulfate proteoglycan confirmed the clone as a corneal proteoglycan and the homology with human and bovine decorin confirmed its identity as decorin. Structural features of the deduced sequence include a 16-amino-acid signal peptide, a 14-amino-acid propeptide, cysteine residues at the N- and C-terminal regions, and a central leucine-rich region (comprising 63% of the protein) containing nine repeats of the sequence LXXLXLXXNXL/I. Chick decorin contains three variations of this sequence that are tandemly linked to form a unit and three units tandemly linked to form the leucine-rich region. The presence of beta bend amino acids flanking the units may serve to delineate the units as structural elements of the leucine-rich region. Sequence homology within the repeats and the spacing of the repeats suggest that this region arose by duplication. Chick decorin primarily differs from mammalian decorins in the 19-amino-acid sequence that starts the N-terminus of the core protein. Within this region, the serine that serves as a potential acceptor for the chondroitin/dermatan sulfate side chain is preceded by a glycine instead of being followed by a glycine as it is in the mammalian decorins and all other mammalian proteoglycans.  相似文献   

6.
The rates of 35S-sulfate incorporation into proteoglycan were compared in multi-scratch wounded and confluent cultures of bovine aortic endothelial cells to determine whether proteoglycan synthesis is altered as cells are stimulated to migrate and proliferate. Incorporation was found to be stimulated in a time-dependent manner, reaching maximal levels 44-50 h after wounding, as cells migrated into wounded areas of the culture dish. Quantitative autoradiography of 35S-sulfate-labeled single-scratch wounded cultures demonstrated a 2-4-fold increase in the number of silver grains over migrating cells near the wound edge when compared to cells remote from the wound edge. Furthermore, when cell proliferation was blocked by inhibition of DNA synthesis, the increase in 35S-sulfate incorporation into proteoglycan after wounding was unaffected. These data indicate that cell division is not required for the modulation of proteoglycan synthesis to occur after wounding. Characterization of the newly synthesized proteoglycan by ion-exchange and molecular sieve chromatography demonstrated that heparan sulfate proteoglycan constitutes approximately 80% of the labeled proteoglycan in postconfluent cultures, while after wounding, chondroitin sulfate proteoglycan and/or dermatan sulfate proteoglycan (CS/DSPG) increases to as much as 60% of the total labeled proteoglycan. These results suggest that CS/DSPG synthesis is stimulated concomitant with the stimulation of endothelial cell migration after wounding.  相似文献   

7.
Chick embryo epiphyseal cartilage has been shown to contain three different proteoglycan species (PG-H, PG-Lb, and PG-Lt). This report is concerned with the purification and characterization of the third proteoglycan, PG-Lt. The proteoglycan can be separated from the other two by virtue of its low buoyant density in a CsCl density gradient and further purified by consecutive ion exchange and gel chromatography. The final preparation is composed of PG-Lt monomer and PG-Lt oligomer. The amino acid composition of PG-Lt is quite different from that of PG-H and PG-Lb and rather resembles that of collagens with respect to high content of glycine and high degrees of hydroxylation of proline and lysine. PG-Lt monomer is composed of disulfide-bonded subunits of Mr congruent to 120,000 and 190,000 as demonstrated by its gel electrophoretic behavior after reduction with 2-mercaptoethanol. The latter, but not the former, contains dermatan sulfate chains with glucuronic acid/iduronic acid residues and yields a protein-enriched core molecule of Mr congruent to 100,000 after digestion with chondroitinase ABC. Both of the protein subunits are completely digestible with bacterial collagenase. Immunofluorescence microscopic examination of cartilage tissues, using an antibody against PG-Lt, shows that this proteoglycan exists in both the cartilage matrix and perichondrial noncartilagenous region. When chondrocytes are plated onto tissue culture dishes, the antibody stains strands found on the cell surfaces and in the intercellular space of substrate-attached cell layers, suggesting that PG-Lt mediates cell-to-cell and cell-to-substrate contacts.  相似文献   

8.
We have previously communicated that heparin released asymmetric acetylcholinesterase (AChE) from cholinergic synapses. Here we report studies showing that heparin, besides releasing asymmetric AChE from the skeletal muscle extracellular matrix (ECM), specifically solubilizes a dermatan sulfate proteoglycan (DSPG) which accounts for more than 95% of the 35S-released material. The co-solubilization of AChE and the proteoglycan opens up the possibility that both macromolecules could be involved in the formation of the soluble AChE complex observed after incubation of muscle homogenate with heparin. Our results suggest a possible association between asymmetric AChE and DSPG at the muscle ECM, moreover this work is the first report of the existence of DSPG at the skeletal muscle cell surface.  相似文献   

9.
We used a polyclonal antibody and a mixture of three monoclonal antibodies (MAb), all recognizing the protein core of the small dermatan sulfate proteoglycan (DSPG) (known as PG-II or decorin) derived from human skin fibroblasts, to immunolocalize this molecule in the characteristic lesions in Alzheimer's brain. All antibodies demonstrated positive decorin immunostaining in both the amyloid deposits of neuritic plaques (NPs) and the filamentous structures within neurofibrillary tangles (NFTs). Unlike heparan sulfate proteoglycans (HSPGs), which tend to be evenly distributed throughout NPs containing amyloid fibrils, decorin was primarily localized to the periphery of the spherically shaped amyloid plaques and to the edges of amyloid fibril bundles within the plaque periphery. Decorin was also immunolocalized to the paired helical and straight filaments within NFTs and to collagen fibrils surrounding blood vessels. The unusual distribution of decorin confined to the periphery of amyloid plaques in AD brain suggests that this particular PG may play an important role in the development of the amyloid plaque.  相似文献   

10.
Immunogold labeling was used to localize the core protein of small dermatan sulfate proteoglycan (DS-PG) on the surface of cultured human fibroblasts. At 4 degrees C, DS-PG core protein was uniformly distributed over the cell surface. At 37 degrees C, gold particles either became rearranged in form of clusters or remained associated with fibrils. Double-label immunocytochemistry indicated the co-distribution of DS-PG core protein and fibronectin in the fibrils. In an enzyme-linked immunosorbent assay, binding of DS-PG from fibroblast secretions and of its core protein to fibronectin occurred at pH 7.4 and at physiological ionic strength. Larger amounts of core protein than of intact proteoglycan could be bound. Fibronectin peptides containing either the heparin-binding domain near the COOH-terminal end or the heparin-binding NH2 terminus were the only fragments interacting with DS-PG and core protein. Competition and replacement experiments with heparin and dermatan sulfate suggested the existence of adjacent binding sites for heparin and DS-PG core protein. It is hypothesized that heparan sulfate proteoglycans and DS-PG may competitively interact with fibronectin.  相似文献   

11.
Posttranslational glycosaminoglycan attachment to decorin, a chondroitin/dermatan sulfate proteoglycan, was studied by expression of a wild-type decorin cDNA and several mutagenized forms in two types of mammalian cells. Transfection of the wild-type cDNA resulted in the synthesis of an authentic chondroitin/dermatan sulfate proteoglycan similar to the decorin molecule synthesized by cultured human fibroblasts. Conversion of the serine residue that serves as the attachment site for the sole glycosaminoglycan chain in decorin to a threonine residue greatly reduced the efficiency of the glycosaminoglycan substitution. Less than 10% of the threonine-mutated core protein acquired a glycosaminoglycan chain, whereas most of the core protein was secreted without such substitution. Expression of cDNA in which an alanine residue had been introduced into the substituted serine position resulted in the secretion of core protein with no detectable glycosaminoglycan. Conversion to alanine of either one of the glycine residues that are adjacent to the substituted serine yielded the proteoglycan form of decorin. These results show that the xylosyltransferase responsible for the initiation of the glycosaminoglycan chain on the core protein can use a threonine residue for this substitution instead of a serine residue, but that such substitution is only partial, creating a "part-time" proteoglycan. Moreover, variations are possible in the sequence context of a glycosaminoglycan-substituted serine residue without loss of glycosaminoglycan substitution. The conformation of the substitution site may therefore be important for xylosyltransferase recognition.  相似文献   

12.
Proteoglycans were extracted and isolated from adult bovine muscle tissue by dissociative extraction followed by density gradient centrifugation, gel chromatography and ion-exchange chromatography. Two proteoglycans were characterized; one of large molecular size (PG-L) and one of small molecular size (PG-S). The recovery of PG-L and PG-S was 33% and 67% respectively. By cellulose acetate electrophoresis before and after treatment with chondroitinase AC and ABC both samples were shown to carry predominantly dermatan sulfate chains. The large proteoglycan was recognized with an antibody against a large dermatan sulfate proteoglycan from bovine sclera, whereas the small was recognized by an antibody against decorin from bovine sclera. Chondroitinase ABC treatment of PG-S followed by SDS-PAGe showed a core protein with a molecular weight of 45 kDa, which also reacted with the decorin antibody. Amino-acid analysis of both PG-L and PG-S revealed an amino-acid composition closely similar, although not identical, to the large dermatan sulfate proteoglycan from bovine sclera and decorin respectively. Immunohistochemical analyses of muscle tissue sections showed that decorin and the large dermatan sulfate proteoglycan are present in the perimysium layers of muscle tissue, although with a somewhat different pattern of distribution. Decorin was, in addition, found in the endomysium.  相似文献   

13.
Monoclonal antibodies produced against chick embryo limb bud proteoglycan (PG-M) were selected for their ability to recognize determinants on intact chondroitin sulfate chains. One of these monoclonal antibodies (IgM; designated MO-225) reacts with PG-M, chick embryo cartilage proteoglycans (PG-H, PG-Lb, and PG-Lt), and bovine nasal cartilage proteoglycan, but not with Swarm rat chondrosarcoma proteoglycan. The reactivity of PG-H to MO-225 is not affected by keratanase digestion but is completely abolished after chondroitinase digestion. Competitive binding analyses with various glycosaminoglycan samples indicate that the determinant recognized by MO-225 resides in a D-glucuronic acid 2-sulfate(beta 1----3)N-acetylgalactosamine 6-sulfate disaccharide unit (D-unit) common to antigenic chondroitin sulfates. A tetrasaccharide trisulfate containing D-unit at the reducing end is the smallest chondroitin sulfate fragment that can inhibit the binding of the antibody to PG-H. Decreasing the size of a D-unit-rich chondroitin sulfate by hyaluronidase digestion results in progressive reduction in its inhibitory activity. The results suggest that the epitope has a requirement for a long stretch of a disaccharide-repeating structure for a better fit to the antibody.  相似文献   

14.
A 1.9-kb cDNA clone to chick lumican (keratan sulfate proteoglycan) was isolated by screening an expressing vector library made from chick corneal RNA with antiserum to chick corneal lumican. The cDNA clone contained an open reading frame coding for a 343-amino acid protein, Mr = 38,640. Structural features of the deduced sequence include: a 18-amino acid signal peptide, cysteine residues at the N- and C-terminal regions, and a central leucine-rich region (comprising 62% of the protein) containing nine repeats of the sequence LXXLXLXXNXL/I, where X represents any amino acid. Lumican contains three variations of this sequence that are tandemly linked to form a unit and three units tandemly linked to form the leucine-rich region. The sequential arrangement of these repeats and their spacing suggest that this region arose by duplication. The deduced sequence shows five potential N-linked glycosylation sites, four of which are in the leucine-rich region. These sites are also potential keratan sulfate attachment sites. The cDNA clone to lumican hybridizes to a 2.0-kb mRNA found in tissues other than cornea, predominantly muscle and intestine. Radiolabeling and immunoprecipitation studies show that lumican core protein is also synthesized by these tissues. The primary structure of lumican is similar to fibromodulin, decorin, and biglycan, which indicates it belongs to the small interstitial proteoglycan gene family. The expression of lumican in tissues other than cornea indicates a broader role for lumican besides contributing to corneal transparency.  相似文献   

15.
A partial-length human cDNA with a predicted amino acid sequence homologous to a previously described heparan sulfate iduronyl 2-sulfotransferase (Kobayashi, M., Habuchi, H., Yoneda, M., Habuchi, O., and Kimata, K. (1997) J. Biol. Chem. 272, 13980-13985) was obtained by searching the expressed sequence-tagged data bank. Northern blot analysis was performed using this homologous cDNA as a probe, which demonstrated ubiquitous expression of messages of 5.1 and 2.0 kilobases in a number of human tissues and in several human cancer cell lines. Since the human lymphoma Raji cell line had the highest level of expression, it was used to isolate a full-length cDNA clone. The full-length cDNA was found to contain an open reading frame that predicted a type II transmembrane protein composed of 406 amino acid residues. The cDNA in a baculovirus expression vector was expressed in Sf9 insect cells, and cell extracts were then incubated together with 3'-phosphoadenosine 5'-phospho[35S]sulfate and potential glycosaminoglycan acceptors. This demonstrated substantial sulfotransferase activity with dermatan sulfate, a small degree of activity with chondroitin sulfate, but no sulfotransferase activity with desulfated N-resulfated heparin. Analysis of [35S]sulfate-labeled disaccharide products of chondroitin ABC, chondroitin AC, and chondroitin B lyase treatment demonstrated that the enzyme only transferred sulfate to the 2-position of uronyl residues, which were preponderantly iduronyl residues in dermatan sulfate, but some lesser transfer to glucuronyl residues of chondroitin sulfate.  相似文献   

16.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

17.
The types and distributions of chondroitin sulfate proteoglycans within developing chick bursae of Fabricius were determined by indirect immunocytochemical analyses using mAb specific for chondroitin/dermatan sulfate epitopes. Analyses obtained from the use of well characterized mAb known to specifically identify chondroitin 4- and dermatan sulfates (antibody 2B6) and chondroitin 6-sulfate (antibody 3B3) were compared with those obtained from two additional mAb raised against chick chondroitin sulfates proteoglycans derived from hemopoietic tissue. The results indicate that chondroitin sulfate compositions of the adjacent lymphopoietic and granulopoietic compartments differ. Chondroitin 6-sulfate, notably absent from lymphopoietic regions, is a major chondroitin sulfate species in granulopoietic regions of day 13 bursae. Moreover, chondroitin 6-sulfate disappears from the granulopoietic compartment in a time course that corresponds to the decline in granulopoietic activity. Simultaneously, there is an apparent increase in chondroitin sulfates associated with developing medullary regions of lymphoid follicles. The content of chondroitin 4-/dermatan sulfates and, most significantly, of chondroitin/dermatan sulfates identified by antibodies raised against chick proteoglycans, increases within developing follicles. As a consequence, by day 18 of incubation, immunostained follicles become clearly demarcated from the connective tissue of the tunica propria. This study provides evidence that chondroitin sulfates are constituents of both lymphopoietic and granulopoietic microenvironments and that subtle changes occur within these proteoglycan structures during bursal development. These developmental changes in chondroitin sulfate compositions are consistent with these molecules playing a functional role in hemopoiesis.  相似文献   

18.
In order to delineate the role of proteoglycans in muscle development, the immunohistological localization of glycosaminoglycans and proteoglycan core proteins was studied in embryonic chick leg at Hamburger-Hamilton stages (St.) 36, 39, 43, and 46, and at 2 weeks posthatching. A specific anatomical landmark was chosen (the junction between the pars pelvica and the pars accessoria of the flexor cruris lateralis muscle) in order to ensure the study of anatomically equivalent sites. Frozen cross sections were immunostained with monoclonal antibodies to chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, and keratan sulfate glycosaminoglycans; to the core proteins of muscle/mesenchymal chondroitin sulfate proteoglycan, dermatan sulfate proteoglycan, and basement membrane heparan sulfate proteoglycan; and to laminin and tenascin. Extracellular matrix zones corresponding to the endomysium, perimysium, epimysium, basement membrane, and myotendinous junction each show characteristic immunostaining patterns from St. 36 to St. 46 and have unique matrix compositions by St. 46. In some cases, there is a sequential or coordinate expression of epitopes, first in the epimysium, then the perimysium, and last in the endomysium. Dermatan sulfate proteoglycan is detected in the epimysium at St. 36, in the perimysium at St. 39 (there is no perimysium structure at St. 36), and is not detected in the endomysium until St. 43. A putative mesenchymal proteoglycan core protein (reactive to the monoclonal antibody MY-174) is detected at St. 39 in both epimysium and perimysium, but is not detected in the endomysium until St. 43. Keratan sulfate antibody immunostains epimysium at St. 39 and perimysium at St. 46, but is never detected in the endomysium. Some epitopes are expressed independently in each of the extracellular matrix zones: antibody to tenascin stains only a subset of the epimysium, at the myotendinous junction; and heparan sulfate proteoglycan and laminin are detected only in the endomysium. Between St. 36 and St. 39, the muscle/MY-174-reactive proteoglycan core protein staining decreases in intensity in the endomysium and becomes positive in the epimysium and perimysium. An inverse relationship is found between (1) the disappearance of muscle/MY-174-reactive proteoglycan core protein staining at the surface of myotubes from St. 36 to St. 39 and (2) the infiltration of laminin and heparan sulfate proteoglycan staining encompassing groups of myotubes (St. 36) to circumferential staining of all myotubes (St. 39).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Corneal explants with scleral rims were freshly prepared from day 18 chicken embryos and incubated in vitro for 3 h in the presence of various radioactive precursors. Radiolabeled proteoglycans were isolated from the stromal tissue and culture medium for analysis. Two predominant proteoglycans were identified in corneal stroma. One contains dermatan sulfate and the other contains keratan sulfate; a structural analysis of each is reported in the accompanying paper (Midura, R.J., and Hascall, V.C. (1989) J. Biol. Chem. 264, 1423-1430). A minor keratan sulfate proteoglycan distinct from the major form, a small amount of heparan sulfate proteoglycan, and some sulfated glycoproteins were also detected in stromal extracts. The biosynthesis of the dermatan sulfate proteoglycan was stable in vitro and in ovo, whereas that of the major keratan sulfate proteoglycan was stable only in ovo. Various treatments were tried to maintain a high rate of keratan sulfate synthesis with time in culture. Cooling the corneal explants to 5 degrees C was the only treatment that reduced this decline in keratan sulfate synthesis in vitro to any significant extent. Three major proteoglycans were observed in the culture medium. Two were dermatan sulfate proteoglycan and appeared to be mainly derived from the scleral tissue surrounding the corneal explant. The third proteoglycan contained keratan sulfate. It was smaller in size and lower in charge density compared to the keratan sulfate proteoglycan found in the stroma, but both appeared to have similar core protein sizes. It seems likely that this proteoglycan was synthesized in the stroma and secreted into the medium. A small amount of heparan sulfate proteoglycan and some sulfated glycoproteins were also detected in the medium.  相似文献   

20.
Tyrosine O-sulfate ester in proteoglycans   总被引:1,自引:0,他引:1  
Tyrosine O-sulfate residues were detected in the protein core of sulfated proteoglycans. When cultured skin fibroblasts and arterial smooth muscle cells were incubated in the presence of [35S]sulfate, dermatan sulfate proteoglycan and chondroitin sulfate proteoglycan isolated from the culture medium contained tyrosine [35S]sulfate ester which accounted for 0.03%-0.82% of total 35S radioactivity incorporated into the sulfated proteoglycans. This corresponds to a tyrosine sulfation of every second (fibroblasts) and every 10th (smooth muscle cells) dermatan sulfate proteoglycan molecule. [3H]Tyrosine labeling of fibroblast dermatan sulfate proteoglycan gave a similar stoichiometry. However, the relative proportion of tyrosine [35S]sulfate in proteoglycans from arterial tissue was about 10 times higher than in that from cultured arterial cells. Pulse chase experiments with [35S]sulfate revealed that tyrosine sulfation is a late event in the biosynthesis of dermatan sulfate proteoglycan from fibroblasts and occurs immediately prior to secretion. Cultured skin fibroblasts from a patient with a progeroid variant (Kresse et al. 1987, Am. J. Hum. Gen. 41, 436-453) which exhibit a partial deficiency to synthesize dermatan sulfate proteoglycan were shown to form and to secrete a tyrosine-sulfated but glycosaminoglycan-free protein core, thus confirming a selective and independent [35S]sulfate labeling of the protein core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号