首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Major constituents of the amyloid plaques found in the brain of Alzheimer's patients are the 39-43 residue beta-amyloid (Abeta) peptides. Extensive in vitro as well as in vivo biochemical studies have shown that the 40- and 42-residue Abeta peptides play major roles in the neurodegenerative pathology of Alzheimer's disease. Although the two Abeta peptides share common aggregation properties, the 42-residue peptide is more amyloidogenic and more strongly associated with amyloid pathology. Thus, characterizations of the two Abeta peptides are of critical importance in understanding the molecular mechanism of Abeta amyloid formation. In this report, we present combined CD and NMR studies of the monomeric states of the two peptides under both non-amyloidogenic (<5 degrees C) and amyloid-forming conditions (>5 degrees C) at physiological pH. Our CD studies of the Abeta peptides showed that initially unfolded Abeta peptides at low temperature (<5 degrees C) gradually underwent conformational changes to more beta-sheet-like monomeric intermediate states at stronger amyloidogenic conditions (higher temperatures). Detailed residue-specific information on the structural transition was obtained by using NMR spectroscopy. Residues in the N-terminal (3-12) and 20-22 regions underwent conformational changes to more extended structures at the stronger amyloidogenic conditions. Almost identical structural transitions of those residues were observed in the two Abeta peptides, suggesting a similar amyloidogenic intermediate for the two peptides. The 42-residue Abeta (1-42) peptide was, however, more significantly structured at the C-terminal region (39-42), which may lead to the different aggregation propensity of the two peptides.  相似文献   

2.
Amyloid beta-protein (Abeta) is the main constituent of amyloid fibrils found in senile plaques and cerebral vessels in Alzheimer's disease (AD) and is derived by proteolysis from the beta-amyloid precursor protein (APP). We have analyzed the amyloidogenic processing of APP using chimeric proteins stably transfected in Chinese hamster ovary cells. The extracellular and transmembrane domains of APP were fused to the cytoplasmic region derived from the CD3 gamma chain of the T cell antigen receptor (CD3gamma). CD3gamma contains an endoplasmic reticulum (ER) retention motif (RKK), in the absence of which the protein is targeted to lysosomes without going through the cell surface (Letourneur, F., and Klausner, R.D. (1992) Cell 69, 1143-1157). We used the wild-type sequence of CD3gamma to create an APP chimera predicted to remain in the ER (gammaAPP(ER)). Deletion of the RKK motif at the C terminus directed the protein directly to the lysosomes (gammaAPP(LYS)). A third chimera was created by removing both lysosomal targeting signals in addition to RKK (gammaAPP(DeltaDelta)). This last construct does not contain known targeting signals and consequently accumulates at the cell surface. We show by immunofluorescence and by biochemical methods that all three APP chimeras localize to the predicted compartments within the cell, thus providing a useful model to study the processing of APP. We found that Abeta(1-40) is generated in the early secretory and endocytic pathways, whereas Abeta(1-42) is made mainly in the secretory pathway. More importantly, we provide evidence that, unlike in neuronal models, both ER/intermediate compartment- and endocytic-derived Abeta forms can enter the secretable pool. Finally, we directly demonstrate that lysosomal processing is not involved in the generation or secretion of either Abeta(1-40) or Abeta(1-42).  相似文献   

3.
To identify the amyloid beta peptide (Abeta) 1-42-degrading enzyme whose activity is inhibited by thiorphan and phosphoramidon in vivo, we searched for neprilysin (NEP) homologues and cloned neprilysin-like peptidase (NEPLP) alpha, NEPLP beta, and NEPLP gamma cDNAs. We expressed NEP, phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PEX), NEPLPs, and damage-induced neuronal endopeptidase (DINE) in 293 cells as 95- to 125-kDa proteins and found that the enzymatic activities of PEX, NEPLP alpha, and NEPLP beta, as well as those of NEP and DINE, were sensitive to thiorphan and phosphoramidon. Among the peptidases tested, NEP degraded both synthetic and cell-secreted Abeta1-40 and Abeta1-42 most rapidly and efficiently. PEX degraded cold Abeta1-40 and NEPLP alpha degraded both cold Abeta1-40 and Abeta1-42, although the rates and the extents of the digestion were slower and less efficient than those exhibited by NEP. These data suggest that, among the endopeptidases whose activities are sensitive to thiorphan and phosphoramidon, NEP is the most potent Abeta-degrading enzyme in vivo. Therefore, manipulating the activity of NEP would be a useful approach in regulating Abeta levels in the brain.  相似文献   

4.
The effect of pressure on the conformational structure of amyloid beta (1-40) peptide (A beta(1-40)), exacerbated with or without temperature, was determined by Fourier transform infrared (FT-IR) microspectroscopy. The result indicates the shift of the maximum peak of amide I band of intact solid A beta(1-40) from 1655 cm(-1) (alpha-helix) to 1647-1643 cm(-1) (random coil) with the increase of the mechanical pressure. A new peak at 1634 cm(-1) assigned to beta-antiparallel sheet structure was also evident. Furthermore, the peak at 1540 cm(- 1) also shifted to 1527 (1529) cm(-1) in amide II band. The former was assigned to the combination of alpha-helix and random coil structures, and the latter was due to beta-sheet structure. Changes in the composition of each component in the deconvoluted and curve-fitted amide I band of the compressed A beta(1-40) samples were obtained from 33% to 22% for alpha-helix/random coil structures and from 47% to 57% for beta-sheet structure with the increase of pressure, respectively. This demonstrates that pressure might induce the conformational transition from alpha-helix to random coil and to beta- sheet structure. The structural transformation of the compressed A beta(1-40) samples was synergistically influenced by the combined effects of pressure and temperature. The thermal-induced formation of beta-sheet structure was significantly dependent on the pressures applied. The smaller the pressure applied the faster the beta-sheet structure transformed. The thermal-dependent transition temperatures of solid A beta(1-40) prepared by different pressures were near 55-60 degrees C.  相似文献   

5.
Thermodynamics of A beta(1-40) amyloid fibril elongation   总被引:1,自引:0,他引:1  
  相似文献   

6.
Cu and Zn have been shown to accumulate in the brains of Alzheimer's disease patients. We have previously reported that Cu(2+) and Zn(2+) bind amyloid beta (Abeta), explaining their enrichment in plaque pathology. Here we detail the stoichiometries and binding affinities of multiple cooperative Cu(2+)-binding sites on synthetic Abeta1-40 and Abeta1-42. We have developed a ligand displacement technique (competitive metal capture analysis) that uses metal-chelator complexes to evaluate metal ion binding to Abeta, a notoriously self-aggregating peptide. This analysis indicated that there is a very-high-affinity Cu(2+)-binding site on Abeta1-42 (log K(app) = 17.2) that mediates peptide precipitation and that the tendency of this peptide to self-aggregate in aqueous solutions is due to the presence of trace Cu(2+) contamination (customarily approximately 0.1 microM). In contrast, Abeta1-40 has much lower affinity for Cu(2+) at this site (estimated log K(app) = 10.3), explaining why this peptide is less self-aggregating. The greater Cu(2+)-binding affinity of Abeta1-42 compared with Abeta1-40 is associated with significantly diminished negative cooperativity. The role of trace metal contamination in inducing Abeta precipitation was confirmed by the demonstration that Abeta peptide (10 microM) remained soluble for 5 days only in the presence of high-affinity Cu(2+)-selective chelators.  相似文献   

7.
We studied the plasma beta carotene concentrations in 40 Alzheimer's disease patients and the association with cerebrospinal fluid beta-amyloid 1-40, (Abeta40), cerebrospinal fluid beta-amyloid 1-42 (Abeta42) and cerebrospinal fluid total Tau. We found that patients with plasma beta carotene levels below the 25th percentile had 55% reduced ratios of Abeta40/Tau and 51% reduced ratios of Abeta 40/Abeta 42 compared with patients in the highest quartile. Mean Tau concentrations in the lowest quartile of plasma beta-carotene levels were 74% higher compared with the highest quartile of plasma beta-carotene levels. Thus, we could demonstrate an statistically significant association between beta carotene levels in plasma and neurochemical markers in the cerebrospinal fluid of Alzheimer's disease patients.  相似文献   

8.
The 39- to 42-residue-long amyloid beta-peptide (Abeta-peptide) forms filamentous structures in the neuritic plaques found in the neuropil of Alzheimer's disease patients. The assembly and deposition of Abeta-fibrils is one of the most important factors in the pathogenesis of this neurodegenerative disease. Although the structural analysis of amyloid fibrils is difficult, single-molecule methods may provide unique insights into their characteristics. In the present work, we explored the nanomechanical properties of amyloid fibrils formed from the full-length, most neurotoxic Abeta1-42 peptide, by manipulating individual fibrils with an atomic force microscope. We show that Abeta-subunit sheets can be mechanically unzipped from the fibril surface with constant forces in a reversible transition. The fundamental unzipping force (approximately 23 pN) was significantly lower than that observed earlier for fibrils formed from the Abeta1-40 peptide (approximately 33 pN), suggesting that the presence of the two extra residues (Ile and Ala) at the peptide's C-terminus result in a mechanical destabilization of the fibril. Deviations from the constant force transition may arise as a result of geometrical constraints within the fibril caused by its left-handed helical structure. The nanomechanical fingerprint of the Abeta1-42 is further influenced by the structural dynamics of intrafibrillar interactions.  相似文献   

9.
BACKGROUND: The amyloid beta (Abeta) peptide is a key molecule in the pathogenesis of Alzheimer's disease. Reliable methods to detect and quantify soluble forms of this peptide in human biological fluids and in model systems, such as cell cultures and transgenic animals, are of great importance for further understanding the disease mechanisms. In this study, the application of new and highly specific ELISA systems for quantification of Abeta40 and Abeta42 (Abeta peptides ending at residues 40 or 42, respectively) in human cerebrospinal fluid (CSF) are presented. MATERIALS AND METHODS: Monoclonal antibodies WO-2, G2-10 and G2-11 were thoroughly characterized by (SPOT) epitope mapping and immunoprecipitation/mass spectrometry. We determined whether aggregation affected the binding capacities of the antibodies to synthetic peptides and whether components of the CSF affected the ability of the antibodies to bind synthetic Abeta1-40 and Abeta1-42 peptides. The stability of Abeta40 and Abeta42 in CSF during different temperature conditions was also studied to optimize sample handling from lumbar puncture to Abeta assay. RESULTS: The detection range for the ELISAs were 20-250 pM. The intra-assay variations were 2% and 3%, and the inter-assay variations were 2% and 10% for Abeta40 and Abeta42, respectively. The antibodies specifically detected the expected peptides with equal affinity for soluble and fibrillar forms of the peptide. The presence of CSF obstructed the recognition of synthetic peptides by the antibodies and the immunoreactivity of endogenous CSF Abeta decreased with increasing storage time and temperature. CONCLUSIONS: This study describes highly sensitive ELISAs with thoroughly characterized antibodies for quantification of Abeta40 and Abeta42, an important tool for the understanding of the pathogenesis of Alzheimer's disease. Our results pinpoint some of the difficulties associated with Abeta quantification and emphasize the importance of using a well-documented assay.  相似文献   

10.
The interaction of calreticulin with amyloid beta (Abeta) was investigated using solid phase and solution binding assays. Calreticulin bound Abeta 1-42 in a time and concentration dependent fashion. The binding was optimal at pH 5 and was stimulated by Ca2+ and inhibited by Zn2+ at pH 7. Interaction took place through the hydrophobic C-terminus of Abeta 1-42 and the polypeptide binding site of calreticulin. The results are discussed in the light of a reported role of calreticulin as a cell surface scavenger receptor.  相似文献   

11.
Hasegawa K  Yamaguchi I  Omata S  Gejyo F  Naiki H 《Biochemistry》1999,38(47):15514-15521
We analyzed the interaction of two kinds of amyloid beta-peptides (A beta), i.e., A beta(1-42) and A beta(1-40), in the kinetics of beta-amyloid fibril (fA beta) formation in vitro, based on a nucleation-dependent polymerization model using fluorescence spectroscopy with thioflavin T. When 25 microM A beta(1-42) was incubated with increasing concentrations of amyloidogenic A beta(1-40), the time to proceed to equilibrium was extended dose-dependently. A similar inhibitory effect was observed when 45 microM A beta(1-40) was incubated with increasing concentrations of A beta(1-42). On the other hand, when 50 microM of nonamyloidogenic A beta(1-40) was incubated with A beta(1-42) at a molar ratio of 10:1 or 5:1, A beta(1-42) initiated fA beta formation from A beta(1-40). The lag time of the reaction shortened in a concentration-dependent manner, with A beta(1-42). We next examined the seeding effect of fA beta formed from A beta(1-42) (fA beta(1-42)) on nonamyloidogenic A beta(1-40). When 50 microM of nonamyloidogenic A beta(1-40) was incubated with 10 or 20 microg/mL (2.2 or 4.4 microM) of fA beta(1-42), the fluorescence showed a sigmoidal increase. The lag time of the reaction was shortened by fA beta(1-42) in a concentration-dependent manner. However, the time to proceed to equilibrium was much longer than when an equal concentration of fA beta formed from A beta(1-40) (fA beta(1-40)) was added to A beta(1-40). The fluorescence increased hyperbolically without a lag phase when 25 microM A beta(1-42) was incubated with 10 or 20 microg/mL (2.3 or 4.6 microM) of fA beta(1-40), and proceeded to equilibrium more rapidly than without fA beta(1-40). An electron microscopic study indicated that the morphology of fA beta formed is governed by the major component of fresh A beta peptides in the reaction mixture, not by the morphology of preexisting fibrils. These results may indicate the central role of A beta(1-42) for fA beta deposition in vivo, among the different coexisting A beta species.  相似文献   

12.
The amyloid beta peptide (A beta) is crucial for the pathogenesis of Alzheimer's disease. Aggregation of monomeric A beta into insoluble amyloid fibrils proceeds through several soluble A beta intermediates, including protofibrils, which are believed to be central in the disease process. The main reason for this is their implication in familial Alzheimer's disease with the Arctic amyloid precursor protein mutation (E693G). This mutation gives rise to early onset Alzheimer's disease, and synthetic A beta 1-40Arctic displays an enhanced rate of protofibril formation in vitro[Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J & Lannfelt L. (2001) Nat Neurosci4, 887-893]. To increase our understanding of the mechanisms involved in A beta aggregation, especially A beta monomer oligomerization into protofibrils and protofibril fibrillization into fibrils, the kinetics of A beta 1-42wt and A beta 1-42Arctic aggregation were examined under different physiochemical conditions, such as concentration, temperature, ionic strength and pH. We used size exclusion chromatography for this purpose, where monomers are separated from protofibrils, and fibrils are separated from protofibrils in a centrifugation step. The Arctic mutation significantly accelerated both A beta 1-42wt protofibril formation and protofibril fibrillization. In addition, we demonstrated that two distinct chemical processes - monomer oligomerization and protofibril fibrillization - were affected differently by changes in the micro-environment and that the Arctic mutation alters the peptide response to such changes.  相似文献   

13.
Epidemiologic evidence implicates cyclooxygenase activity in the pathogenesis of Alzheimer's disease, in which amyloid plaques have been found to contain increased levels of dimers and higher multimers of the amyloid beta peptide. The product of the oxygenation of arachidonic acid by the cyclooxygenases, prostaglandin H2 (PGH2), rearranges non-enzymatically to several prostaglandins, including the highly reactive gamma-keto aldehydes, levuglandins E2 and D2. We demonstrate that PGH2 markedly accelerates the formation of dimers and higher oligomers of amyloid beta1-42. This is associated with the formation of levuglandin adducts of the peptide. These findings provide the molecular basis for a hypothesis linking cyclooxygenase activity to the formation of oligomers of amyloid beta.  相似文献   

14.
Parbhu A  Lin H  Thimm J  Lal R 《Peptides》2002,23(7):1265-1270
Amyloid beta protein (AbetaP) is the major fibrillar constituent of senile plaques. However, no causative role for AbetaP-fibers in Alzheimer's disease (AD) pathology is established. Globular AbetaPs are continuously released during normal cellular metabolism at pico- to nano-molar concentration. We used atomic force microscopy (AFM) to examine aggregation of freshly prepared AbetaP(1-42) and to examine the role of AbetaP concentration, imaging medium (air, water, or PBS) and agonists/antagonists on AbetaP-fibrillogenesis. At even very high and non-physiological AbetaP concentrations, 24-48 h of real-time AFM imaging (a) in water show only multiple layers of globular aggregates and no fibrils and (b) in PBS show mainly the globular structures and some short fibrils. On-line addition of Zn, an agonist for AbetaP-fibrillogenesis, induced a slow but non-fibrillar aggregation of globular AbetaPs. EDTA, a chelator of Zn and calcium (a modulator of AbetaP-mediated toxicity) induced a reversible change in the Zn-mediated aggregation. These results strongly suggest that no AbetaP-fibers are formed for the physiologically relevant concentration and thus the plaque-associated fibers may not account for the AD pathophysiology.  相似文献   

15.
Oxidized cholesterol has been widely reported to contribute to the pathogenesis of Alzheimer's disease (AD). However, the mechanism by which they affect the disease is not fully understood. Herein, we aimed to investigate the effect of 7-ketocholesterol (7keto) on membrane-mediated aggregation of amyloid beta (Aβ-42), one of the critical pathogenic events in AD. We have shown that when cholesterol is present in lipid vesicles, kinetics of Aβ nuclei formation is moderately hindered while that of fibril growth was considerably accelerated. The partial substitution of cholesterol with 7keto slightly enhanced the formation of Aβ-42 nuclei and remarkably decreased fibril elongation, thus maintaining the peptide in protofibrillar aggregates, which are reportedly the most toxic species. These findings add in understanding of how cholesterol and its oxidation can affect Aβ-induced cytotoxicity.  相似文献   

16.
The Fmoc solid phase synthesis of A beta(1-40), a strongly aggregating peptide found in Alzheimer's disease brain, was performed using 2-hydroxy-4-methoxybenzyl (Hmb) backbone amide protection. Hmb-Gly residues were incorporated using N(alpha)-Fmoc-Hmb-Gly-OH rather than N,O-bisFmoc-Hmb-Gly-OPfp. Amino acid acylation of the sterically hindered Hmb-amino acids was monitored using 'semi-on-line' MALDI-TOF-MS in a novel application of this technique which significantly simplified the successful incorporation of these residues. Standard coupling conditions in N,N-dimethylformamide (DMF) were used throughout the synthesis. Comparative structural studies of acetyl-Hmb-protected and native A beta(1-40) were performed to investigate the structural basis of Hmb-mediated disaggregation. The incorporation of backbone amide protection was observed by circular dichroism spectroscopy and gel electrophoresis to strongly affect the solution structure of A beta(1-40). Despite the reported structure-breaking activity of Hmb groups, penta(acetyl-Hmb)A beta(1-40) was found to adopt both alpha-helix and intermolecular beta-sheet conformations. In 100% TFE a mixed alpha-helix/random coil structure was formed by the protected peptide indicating reduced alpha-helical propensity relative to A beta(1-40). The protected peptide formed beta-sheet structures in aqueous buffer. Gel electrophoresis indicated that, unlike native A beta(1-40), penta(acetyl-Hmb)A beta(1-40) did not form large aggregate species.  相似文献   

17.
For biophysical studies using heteronuclear NMR analysis of amyloid beta peptide, construction of an efficient and high yield expression system of uniformly isotopic labeled amyloid beta peptide is desirable. Here we succeeded in obtaining (15)N-labeled amyloid beta 1-40 expressed by attachment to hen egg white lysozyme as a fusion protein.  相似文献   

18.
Detailed structural studies of amyloid fibrils can elucidate the way in which their constituent polypeptides are folded and self-assemble, and exert their neurotoxic effects in Alzheimer's disease (AD). We have previously reported that when aqueous solutions of the N-terminal hydrophilic peptides of AD beta-amyloid (A beta) are gradually dried in a 2-Tesla magnetic field, they form highly oriented fibrils that are well suited to x-ray fiber diffraction. The longer, more physiologically relevant sequences such as A beta(1-40) have not been amenable to such analysis, owing to their strong propensity to polymerize and aggregate before orientation is achieved. In seeking an efficient and inexpensive method for rapid screening of conditions that could lead to improved orientation of fibrils assembled from the longer peptides, we report here that the birefringence of a small drop of peptide solution can supply information related to the cooperative packing of amyloid fibers and their capacity for magnetic orientation. The samples were examined by electron microscopy (negative and positive staining) and x-ray diffraction. Negative staining showed a mixture of straight and twisted fibers. The average width of both types was approximately 70 A, and the helical pitch of the latter was approximately 460 A. Cross sections of plastic-embedded samples showed a approximately 60-A-wide tubular structure. X-ray diffraction from these samples indicated a cross-beta fiber pattern, characterized by a strong meridional reflection at 4.74 A and a broad equatorial reflection at 8.9 A. Modeling studies suggested that tilted arrays of beta-strands constitute tubular, 30-A-diameter protofilaments, and that three to five of these protofilaments constitute the A beta fiber. This type of structure--a multimeric array of protofilaments organized as a tubular fibril--resembles that formed by the shorter A beta fragments (e.g., A beta(6-25), A beta(11-25), A beta(1-28)), suggesting a common structural motif in AD amyloid fibril organization.  相似文献   

19.
Human amyloid beta peptides Abeta1-40 and Abeta1-42 exhibit NADH oxidase activity with regular oscillations at intervals of ca 6 min. In the presence of copper, the oscillations in Abeta1-40 and Abeta1-42 become more pronounced and now assume a period length of 24 min. In the presence of copper, the oscillations are similar to those observed with NADH oxidase activities of cell surface ECTO-NOX proteins in general including a period length of 24 min. Solutions of copper sulphate in the presence of all the reagents except for the peptides did not exhibit the oscillatory behavior. NOX proteins have been reported previously to have properties of prions and to form amyloid rods of indeterminant length similar to those formed by the 39-43 residue amyloid beta proteins (Abeta). In this report, we demonstrate a second similarity between ECTO-NOX proteins and amyloid beta, that of an oscillating NADH oxidase activity with a period length of 24 min when assayed in the presence of copper.  相似文献   

20.
NMRsolution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide Abeta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native Abeta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length Abeta peptides Abeta(1-40) and Abeta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which Abeta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of Abeta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号