首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Src family kinase Fyn mediates signals induced by TCR antagonists   总被引:1,自引:0,他引:1  
FcR nonbinding anti-CD3 epsilon mAbs elicit partial TCR signaling that leads to T cell unresponsiveness and tolerance in vivo. In this study, the membrane-proximal events that promote T cell inactivation by FcR nonbinding anti-CD3 mAbs were examined. In the context of FcR nonbinding anti-CD3, TCR complexes did not aggregate and failed to translocate into glycolipid-enriched membrane microdomains. Furthermore, FcR nonbinding anti-CD3 mAbs induced tyrosine phosphorylation of the Fyn substrate Cbl, but not the ZAP-70 substrate linker for activation of T cells. Overexpression of Fyn, but not Lck, restored the mitogenicity of FcR nonbinding anti-CD3 in primary T cells. Taken together, these results suggest that Fyn mediates the partial signaling induced by TCR antagonists.  相似文献   

2.
The TNF-related apoptosis-inducing ligand was shown to provide a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell proliferation and cytokine production. Although a number of signaling pathways were linked to the TCR/CD3 complex, it is not known how these two receptors cooperate to induce T cell activation. In this study, we show that TRAIL-induced costimulation of T cells depends on activation of the NF-κB pathway. TRAIL induced the NF-κB pathway by phosphorylation of inhibitor of κB factor kinase and protein kinase C in conjunction with anti-CD3. Furthermore, we demonstrated that TRAIL costimulation induced phosphorylation of the upstream TCR-proximal tyrosine kinases, Lck and ZAP70. Ligation of the TRAIL by its soluble receptor, DR4-Fc, alone was able to induce the phosphorylation of Lck and ZAP70 and to activate the NF-κB pathway; however, it was insufficient to fully activate T cells to support T cell proliferation. In contrast, TRAIL engagement in conjunction with anti-CD3, but not TRAIL ligation alone, induced lipid raft assembly and recruitment of Lck and PKC. These results demonstrate that TRAIL costimulation mediates NF-κB activation and T cell proliferation by lipid raft assembly and recruitment of Lck. Our results suggest that in TRAIL costimulation, lipid raft recruitment of Lck integrates mitogenic NF-κB-dependent signals from the TCR and TRAIL in T lymphocytes.  相似文献   

3.
Dong S  Corre B  Nika K  Pellegrini S  Michel F 《PloS one》2010,5(11):e15114

Background

One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive.

Methodology/Principal Findings

We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement.

Conclusions/Significance

Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.  相似文献   

4.
Dai P  Liu X  Li QW 《遗传》2012,34(3):289-295
胸腺中T细胞的发育及次级淋巴组织中成熟T细胞的活化均需要细胞能够对环境信号分子做出适应性的反应。在共刺激分子及细胞因子受体介导的信号参与下通过TCR(T cell receptor)及其辅助受体CD4和CD8与MHC/抗原肽复合物相互作用,可以诱导TCR信号通路激活并最终导致T细胞免疫反应的发生。Src家族激酶Lck(Lymphocyte-specific protein tyrosine kinase)和Fyn(Proto-oncogene tyrosine-protein kinase)的激活是启动TCR信号通路的关键因素。在T细胞的发育、阳性选择、初始T细胞的外周存活及由淋巴细胞缺失诱导的细胞增殖中都起着关键性的作用。研究显示,虽然这两种信号分子紧密相关,但在某些条件下Lck发挥着比Fyn更重要的作用,并且Fyn仅可以补充Lck的部分功能。文章针对这两个激酶在T细胞发育的整个过程中的作用机制进行了论述。  相似文献   

5.
戴鹏  刘欣  李庆伟 《遗传》2012,34(3):289-295
胸腺中T细胞的发育及次级淋巴组织中成熟T细胞的活化均需要细胞能够对环境信号分子做出适应性的反应。在共刺激分子及细胞因子受体介导的信号参与下通过TCR(T cell receptor )及其辅助受体CD4和CD8与MHC/抗原肽复合物相互作用, 可以诱导TCR信号通路激活并最终导致T细胞免疫反应的发生。Src家族激酶Lck(Lymphocyte-specific protein tyrosine kinase)和Fyn (Proto-oncogene tyrosine-protein kinase)的激活是启动TCR信号通路的关键因素。在T细胞的发育、阳性选择、初始T细胞的外周存活及由淋巴细胞缺失诱导的细胞增殖中都起着关键性的作用。研究显示, 虽然这两种信号分子紧密相关, 但在某些条件下Lck发挥着比Fyn更重要的作用, 并且Fyn仅可以补充Lck的部分功能。文章针对这两个激酶在T细胞发育的整个过程中的作用机制进行了论述。  相似文献   

6.
In the present study, we aimed to demonstrate that CD4 may represent a critical turning point that governs the apoptotic and survival programs in T cells, without modifying the physical association with the TCR-CD3 complex. To address this issue, we have explored the possibility that the activation of CD4 may transduce apoptotic signals unless signaling effectors neutralize them. Our data show that in Jurkat T cells CD4 engagement by Leu3a mAb results in a rapid and strong increase of Lck kinase activity, subsequent alterations of mitochondrial membrane potential, and apoptosis. Critical parameters are coassociation of CD4/Lck with TCR/CD3 and up-regulation of the proapoptotic protein Bax. Indeed, Leu3a-mediated Lck activation failed to induce apoptotic features in Jurkat cells either defective for TCR/CD3 or overexpressing the antiapoptotic protein Bcl-2. Furthermore, we demonstrate that Leu3a treatment of Jurkat cells overexpressing Vav results in the inhibition of mitochondrial damage and apoptosis; this rescue effect is accompanied with a significant decrease of Bax expression observed in apoptotic cells. Our evidence that the activation of Lck activates in T cells apoptotic pathways which are counteracted by Vav, a signaling molecule that cooperates with CD28 to boost TCR signals, suggests a novel role for costimulation in protecting T cells from CD4-mediated cell death.  相似文献   

7.
Lymphocytes must promote protective immune responses while still maintaining self-tolerance. Stimulation through the T cell receptor (TCR) can lead to distinct responses in naive and memory CD4 T cells. Whereas peptide antigen stimulates both naive and memory T cells, soluble anti-CD3 antibodies and bacterial superantigens stimulate only naive T cells to proliferate and secrete cytokines. Further, superantigens, like staphylococcal enterotoxin B (SEB), cause memory T cells to become anergic while soluble anti-CD3 does not. In the present report, we show that signal transduction through the TCR is impaired in memory cells exposed to either anti-CD3 or SEB. A block in signaling leads to impaired activation of the kinase ZAP-70 so that downstream signals and cell proliferation do not occur. We further show that the signaling defect is unique to each agent. In anti-CD3-treated memory T cells, the src kinase Lck is only transiently activated and does not phosphorylate and activate ZAP-70. In SEB-treated memory T cells, ZAP-70 does not interact with the TCR/CD3 complex to become accessible to Lck. Finally, we provide evidence that alternative signaling pathways are initiated in SEB-treated memory cells. Altered signaling, indicated by an elevation in activity of the src kinase Fyn, may be responsible for memory cell anergy caused by SEB. Thus, differentiation of naive T cells into memory cells is accompanied by alterations in TCR-mediated signaling that can promote heightened recall immunity or specific tolerance.  相似文献   

8.
Lck and Fyn, members of the Src family of tyrosine kinases, are key components of the αβTCR-coupled signaling pathway. While it is generally accepted that both Lck and Fyn positively regulate signal transduction by the αβTCR, recent studies have shown that Lck and Fyn have distinct functions in this signaling pathway, with Lck being a positive regulator and Fyn being a negative regulator of αβTCR signal transduction. To determine whether Lck and Fyn also differentially regulate γδTCR signal transduction, we analyzed γδ T cell development and function in mice with reduced Lck or Fyn expression levels. We found that reducing Lck or Fyn levels altered the strength of the γδTCR signaling response, with low levels of Lck weakening γδTCR signal strength and low levels of Fyn augmenting γδTCR signal strength. These alterations in γδTCR signal strength had profound effects not only on αβ/γδ lineage choice, but also on γδ thymocyte maturation and γδ T cell effector function. These results indicate that the cellular levels of Lck and Fyn play a role in regulating the strength of the γδTCR signaling response at different stages in the life of the γδ T cell.  相似文献   

9.
T-cell antigen receptor (TCR) engagement results in sequential activation of the Src protein tyrosine kinases (PTKs) Lck and Fyn and the Syk PTKs, ZAP-70 and Syk. While the Src PTKs mediate the phosphorylation of TCR-associated signaling subunits and the phosphorylation and activation of the Syk PTKs, the lack of a constitutively active Syk PTK has prohibited the analysis of Lck function downstream of these initiating signaling events. We describe here the generation of an activated Syk family PTK by substituting the kinase domain of Syk for the homologous region in ZAP-70 (designated as KS for kinase swap). Expression of the KS chimera resulted in its autophosphorylation, the phosphorylation of cellular proteins, the upregulation of T-cell activation markers, and the induction of interleukin-2 gene synthesis in a TCR-independent fashion. The KS chimera and downstream ZAP-70 or Syk substrates, such as SLP-76, were still phosphorylated when expressed in Lck-deficient JCaM1.6 T cells. However, expression of the KS chimera in JCaM1.6 cells failed to rescue downstream signaling events, demonstrating a functional role for Lck beyond the activation of the ZAP-70 and Syk PTKs. These results indicate that downstream TCR signaling pathways may be differentially regulated by ZAP-70 and Lck PTKs and provide a mechanism by which effector functions may be selectively activated in response to TCR stimulation.  相似文献   

10.
The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca2+ imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca2+ response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca2+ signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.  相似文献   

11.
In naive T cells, engagement of the TCR with agonist peptide:MHC molecules leads to phosphorylation of key intracellular signaling intermediates within seconds and this peaks within minutes. However, the cell does not commit to proliferation and IL-2 cytokine production unless receptor contact is sustained for several hours. The biochemical basis for this transition to full activation may underlie how T cells receive survival signals while maintaining tolerance, and is currently not well understood. We show here that for CD8 T cells commitment to proliferation and cytokine production requires sustained activation of the Src family kinase Lck and is opposed by the action of Fyn. Thus, in the absence of Fyn, commitment to activation occurs more rapidly, the cells produce more IL-2, and undergo more rounds of division. Our data demonstrate a role for Fyn in modulating the response to Ag in primary T cells.  相似文献   

12.
13.
Down-regulation of IL-2 production by activation of T cells through Ly-6A/E   总被引:4,自引:0,他引:4  
Ly-6A/E molecules are expressed on the surface of T cells and have been shown to function in activation by the capacity of anti-Ly-6A/E mAb to induce T cell hybridomas or normal T cells to produce IL-2. Recent evidence suggests that activation through Ly-6A/E may be linked to the TCR signaling pathway. To further investigate the relationship between Ly-6- and TCR-induced T cell activation, we have examined whether an anti-Ly-6A/E mAb (D7) modulates TCR signaling in vitro. We now report that mAb D7 specifically inhibited IL-2 production by T cells also activated through TCR. Such inhibition was noted for normal T cells stimulated by soluble anti-CD3 or alloantigen and for T hybridomas stimulated by soluble anti-CD3. The ability of D7 to inhibit IL-2 production by T hybridomas was dependent on the nature of the TCR activating signal because IL-2 production was not inhibited when T hybridomas were stimulated with Ag or immobilized anti-CD3. Inhibition of IL-2 production by D7 apparently required cross-linking of the mAb because D7 F(ab')2 fragments were not effective for inhibition of IL-2 production. Similar to its ability to enhance anti-Ly-6A/E-induced activation of T and B cells, IFN-gamma enhanced the D7-induced inhibition of IL-2 production by alloantigen-activated normal T cells. These data further support the notion that Ly-6 and TCR signaling pathways are interrelated.  相似文献   

14.
Engagement of the TCR initiates at least two transmembrane signaling pathways, the phosphatidylinositol pathway and a tyrosine kinase pathway. The T cell leukemic line Jurkat was used to study the relationship between the number of occupied TCR on the cell surface and the TCR-mediated activation of phosphatidylinositol-specific phospholipase C. We characterized a series of Ti beta-chain transfectants of the Jurkat mutant J.RT3-T3.5, in which surface expression of the TCR is limited by expression of the TCR beta-chain. Calibrated flow cytometry was used to determine the number of binding sites for anti-CD3 mAb on the surface of these cells, which was less than 1.2 x 10(3) to 1.2 x 10(4) sites/cell. In the presence of lithium chloride, the accumulation of inositol phosphates (InsP) in these cell lines in response to saturating concentrations of anti-CD3 mAb was proportional to the calculated surface TCR number. This result was consistent with dose-response studies using anti-CD3 mAb in Jurkat cells, in which ligand concentration, rather than number of binding sites, was limiting. Increase in intracellular free calcium concentration was a sensitive indicator of TCR engagement and correlated with the level of TCR expression, but less closely than did InsP levels. Induction of the early lymphocyte activation marker CD69 by anti-CD3 mAb also correlated with surface expression of TCR. In order to test whether limitation of this signaling pathway by TCR number may be relevant to signal transduction in the wild-type cell, we compared PLC activity in Jurkat cells during soluble anti-CD3 mAb-induced internalization of the TCR and also in response to immobilized mAb. The net accumulation of InsP per min decreased linearly with TCR number during the rapid phase of TCR internalization, confirming the limiting role of TCR number in this system. When internalization was prevented by immobilization of the stimulus, there was no decrease in the net accumulation of InsP per minute over time. In a Jurkat cell line transfected with the heterologous human muscarinic receptor, subtype 1, the InsP response to a muscarinic agonist was unaffected by TCR internalization, indicating that the distal phosphatidylinositol pathway was not affected by prolonged stimulation of the TCR. We conclude that transmembrane signaling through the TCR may be regulated by the number of surface TCR-ligand complexes. This observation has implications for transmembrane signaling in both mature T cells and thymocytes.  相似文献   

15.
Src family tyrosine kinases play a key role in T-cell antigen receptor (TCR) signaling. They are responsible for the initial tyrosine phosphorylation of the receptor, leading to the recruitment of the ZAP-70 tyrosine kinase, as well as the subsequent phosphorylation and activation of ZAP-70. Molecular and genetic evidence indicates that both the Fyn and Lck members of the Src family can participate in TCR signal transduction; however, it is unclear to what extent they utilize the same signal transduction pathways and activate the same downstream events. We have addressed this issue by examining the ability of Fyn to mediate TCR signal transduction in an Lck-deficient T-cell line (JCaM1). Fyn was able to induce tyrosine phosphorylation of the TCR and recruitment of the ZAP-70 kinase, but the pattern of TCR phosphorylation was altered and activation of ZAP-70 was defective. Despite this, the SLP-76 adapter protein was inducibly tyrosine phosphorylated, and both the Ras-mitogen-activated protein kinase and the phosphatidylinositol 4, 5-biphosphate signaling pathways were activated. TCR stimulation of JCaM1/Fyn cells induced the expression of the CD69 activation marker and inhibited cell growth, but NFAT activation and the production of interleukin-2 were markedly reduced. These results indicate that Fyn mediates an alternative form of TCR signaling which is independent of ZAP-70 activation and generates a distinct cellular phenotype. Furthermore, these findings imply that the outcome of TCR signal transduction may be determined by which Src family kinase is used to initiate signaling.  相似文献   

16.
Signal transduction by antigen receptors and some Fc receptors requires the activation of a family of receptor-associated transmembrane accessory proteins. One common feature of the cytoplasmic domains of these accessory molecules is the presence is at least two YXXA repeats that are potential sites for interaction with Src homology 2 domain-containing proteins. However, the degree of similarity between the different receptor-associated proteins varies from that of T-cell receptor (TCR) zeta and Fc receptor RIIIA gamma chains, which are homologous, to the distantly related Ig alpha and Ig beta proteins of the B-cell antigen receptor. To determine whether T- and B-cell antigen receptors are in fact functionally homologous, we have studied signal transduction by chimeric immunoglobulins bearing the Ig alpha or Ig beta cytoplasmic domain. We found that Ig alpha and Ig beta cytoplasmic domains were able to activate Ca2+ flux, interleukin-2 secretion, and phosphorylation of the same group of cellular substrates as the TCR in transfected T cells. Chimeric proteins were then used to examine the minimal requirements for activation of the Fyn, Lck, and ZAP kinases in T cells. Both Ig alpha and Ig beta were able to trigger Fyn, Lck, and ZAP directly without involvement of TCR components. Cytoplasmic tyrosine residues in Ig beta were required for recruitment and activation of ZAP-70, but these amino acids were not essential for the activation of Fyn and Lck. We conclude that Fyn and Lck are able to recognize a clustered nonphosphorylated immune recognition receptor, but activation of these kinases is not sufficient to induce cellular responses such as Ca2+ flux and interleukin-2 secretion. In addition, the molecular structures involved in antigen receptor signaling pathways are conserved between T and B cells.  相似文献   

17.
In resting T cells, Csk is constitutively localized in lipid rafts by virtue of interaction with a phosphorylated adaptor protein, Csk-binding protein (Cbp)/phosphoprotein associated with glycolipid-enriched microdomains, and sets an activation threshold in TCR signaling. In this study, we examined a kinase responsible for Cbp phosphorylation in T cell membrane rafts. By analyzing T cells from Fyn-/- mice, we clearly demonstrated that Fyn, but not Lck, has its kinase activity in membrane rafts, and plays a critical role in Cbp phosphorylation, Cbp-Csk interaction, and Csk kinase activity. Naive CD44(low)CD62 ligand(high) T cells were substantially reduced in Fyn-/- mice, presumably due to the inhibition of Cbp phosphorylation. Thus, Fyn mediates Cbp-Csk interaction and recruits Csk to rafts by phosphorylating Cbp. Csk recruited to rafts would then be activated and inhibit the kinase activity of Lck to keep resting T cells in a quiescent state. Our results elucidate a negative regulatory role for Fyn in proximal TCR signaling in lipid rafts.  相似文献   

18.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

19.
T cell receptor (TCR) engagement triggers a series of events including protein tyrosine kinase activation, tyrosine phosphorylation of adapter proteins, and multiple protein-protein interactions. We observed that adapter protein SKAP55, the Src kinase-associated phosphoprotein, formed homodimers through its SH3 domain and SK region. SKAP55 as a substrate interacted with Fyn kinase in vivo. In Jurkat cells, interaction between SKAP55 and Fyn kinase depended on TCR activation. Stable overexpression of SKAP55 in Jurkat cells caused mitogen-activated protein kinase activation following TCR engagement. Anti-CD3 stimulation also promoted the interaction of SKAP55 with Grb-2 in T cells. Mutational analysis revealed that tyrosine 271 in SKAP55 played a pivotal role for interaction with both Fyn kinase and adapter protein Grb-2, indicating that the Fyn-phosphorylated SKAP55 transiently associates with adapter Grb-2 to mediate mitogen-activated protein kinase activation. Intriguingly, T cell receptor engagement dramatically induced the translocation of endogenous SKAP55 to lipid rafts where SKAP55 was found to interact with Fyn kinase, suggesting that the positive function of SKAP55 via its association with Fyn and other signaling components may have been involved in raft-mediated T cell activation.  相似文献   

20.
Costimulation by CD28 or lipid-raft-associated CD48 potentiate TCR-induced signals, cytoskeletal reorganization, and IL-2 production. We and others have proposed that costimulators function to construct a raft-based platform(s) especially suited for TCR engagement and sustained and processive signal transduction. Here, we characterize TCR/CD48 and TCR/CD28 costimulation in T cells expressing Lck Src homology 3 (SH3) mutants. We demonstrate that Lck SH3 functions after initiation of TCR-induced tyrosine phosphorylation and concentration of transducers within rafts, to regulate the costimulation-dependent migration of rafts to the TCR contact site. Expression of kinase-active/SH3-impaired Lck mutants disrupts costimulation-dependent raft recruitment, sustained TCR protein tyrosine phosphorylation, and IL-2 production. However, TCR-induced apoptosis, shown only to require "partial" TCR signals, is unaffected by expression of kinase-active/SH3-impaired Lck mutants. Therefore, two distinctly regulated raft reorganization events are required for processive and sustained "complete" TCR signal transduction and T cell activation. Together with recent characterization of CD28 and CD48 costimulatory activities, these findings provide a molecular framework for two signal models of T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号