首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-1 receptor like 1 (ST2) is a negative regulator of Toll-like receptor (TLR) signaling. TLRs are important for host defense during respiratory tract infections by both influenza and Streptococcus (S.) pneumoniae. Enhanced susceptibility to pneumococcal pneumonia is an important complication following influenza virus infection. We here sought to determine the role of ST2 in primary influenza A infection and secondary pneumococcal pneumonia. ST2 knockout (st2 −/−) and wild-type (WT) mice were intranasally infected with influenza A virus; in some experiments mice were infected 2 weeks later with S. pneumoniae. Both mouse strains cleared the virus similarly during the first 14 days of influenza infection and had recovered their weights equally at day 14. Overall st2−/− mice tended to have a stronger pulmonary inflammatory response upon infection with influenza; especially 14 days after infection modest but statistically significant elevations were seen in lung IL-6, IL-1β, KC, IL-10, and IL-33 concentrations and myeloperoxidase levels, indicative of enhanced neutrophil activity. Interestingly, bacterial lung loads were higher in st2−/− mice during the later stages of secondary pneumococcal pneumonia, which was associated with relatively increased lung IFN-γ levels. ST2 deficiency did not impact on gross lung pathology in either influenza or secondary S. pneumoniae pneumonia. These data show that ST2 plays a limited anti-inflammatory role during both primary influenza and postinfluenza pneumococcal pneumonia.  相似文献   

2.
Streptococcus cremoris strain IL964 possessed a restriction and modification (R/M) activity which resulted in a bacteriophage efficiency of plating of 5 × 10−6. Phage sensitivity of protoplast-induced plasmid-cured derivatives indicated that two plasmids called pIL103 (5.7 kilobases) and pIL107 (15.2 kilobases) were each coding for one R/M system. Plasmid pIL103-encoded R/M was ascertained by transfer into the plasmid-free, R/M strain IL1403 of S. lactis, using protoplast cotransformation. This procedure failed for pIL107 because of some degree of incompatibility between pIL107 and the indicator plasmid pHV1301 used in cotransformation experiments. We also observed that plasmid pIL105 (8.7 kilobases) which showed no incidence on phage sensitivity in the parental strain IL964, mediated abortive infection in strain IL1403. In 97% of the infected cells, the phage infection was abortive, while in the remaining 3% phages were produced with a decreased burst size (50 instead of 180).  相似文献   

3.
In Streptococcus pneumoniae expression of pyruvate oxidase (SpxB) peaks during the early growth phase, coincident with the time of natural competence. This study investigated whether SpxB influences parameters of competence, such as spontaneous transformation frequency, expression of competence genes, and DNA release. Knockout of the spxB gene in strain D39 abolished spontaneous transformation (compared to a frequency of 6.3 × 10−6 in the parent strain [P < 0.01]). It also reduced expression levels of comC and recA as well as DNA release from bacterial cells significantly during the early growth phase, coincident with the time of spontaneous competence in the parent strain. In the spxB mutant, supplementation with competence-stimulating peptide 1 (CSP-1) restored transformation (rate, 1.8 × 10−2). This speaks against the role of SpxB as a necessary source of energy for competence. Neither supplementation with CSP-1 nor supplementation with the SpxB products H2O2 and acetate altered DNA release. Supplementation of the parent strain with catalase did not reduce DNA release significantly. In conclusion, the pneumococcal spxB gene influences competence; however, the mechanism remains elusive.  相似文献   

4.
Strains of Escherichia coli recently isolated from human feces were examined for the frequency with which they accept an R factor (R1) from a derepressed fi+ strain of E. coli K-12 and transfer it to fecal and laboratory strains. Colicins produced by some of the isolates rapidly killed the other half of the mating pair; therefore, conjugation was conducted by a membrane filtration procedure whereby this effect was minimized. The majority of fecal E. coli isolates accepted the R factor at lower frequencies than K-12 F, varying from 10−2 per donor cell to undetectable levels. The frequencies with which certain fecal recipients received the R-plasmid were increased when its R+ transconjugant was either cured of the R1-plasmid and remated with the fi+ strain or backcrossed into the parental strain. The former suggests the loss of an incompatibility plasmid, and the latter suggests the modification of the R1-plasmid deoxyribonucleic acid (DNA). In general, the fecal R+E. coli transconjugants were less effective donors for K-12 F and heterologous fecal strains than was the fi+ K-12 strain, whereas the single strain of Citrobacter freundii examined was generally more competent. Passage of the R1-plasmid to strains of salmonellae reached mating frequencies of 10−1 per donor cell when the recipient was a Salmonella typhi previously cured of its resident R-plasmid. However, two recently isolated strains of Salmonella accepted the R1-plasmid from E. coli K-12 R+ or the R+E. coli transconjugants at frequencies of 5 × 10−7 or less.  相似文献   

5.
Bacterial uptake by phagocytic cells is a vital event in the clearance of invading pathogens such as Streptococcus pneumoniae. A major role of the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes against invasive pneumococcal disease is described in this study. Phagocytosis experiments using different serotypes demonstrated that PSGL-1 is involved in the recognition, uptake and killing of S. pneumoniae. Co-localization of several clinical isolates of S. pneumoniae with PSGL-1 was demonstrated, observing a rapid and active phagocytosis in the presence of PSGL-1. Furthermore, the pneumococcal capsular polysaccharide and the main autolysin of the bacterium ―the amidase LytA― were identified as bacterial ligands for PSGL-1. Experimental models of pneumococcal disease including invasive pneumonia and systemic infection showed that bacterial levels were markedly increased in the blood of PSGL-1 −/− mice. During pneumonia, PSGL-1 controls the severity of pneumococcal dissemination from the lung to the bloodstream. In systemic infection, a major role of PSGL-1 in host defense is to clear the bacteria in the systemic circulation controlling bacterial replication. These results confirmed the importance of this receptor in the recognition and clearance of S. pneumoniae during invasive pneumococcal disease. Histological and cellular analysis demonstrated that PSGL-1 −/− mice have increased levels of T cells migrating to the lung than the corresponding wild-type mice. In contrast, during systemic infection, PSGL-1 −/− mice had increased numbers of neutrophils and macrophages in blood, but were less effective controlling the infection process due to the lack of this functional receptor. Overall, this study demonstrates that PSGL-1 is a novel receptor for S. pneumoniae that contributes to protection against invasive pneumococcal disease.  相似文献   

6.
Both PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6+/+ and IL-6−/− mice. PTH-mediated hematopoietic cell expansion was attenuated in IL-6−/− compared with IL-6+/+ bone marrow, whereas sIL-6R treatment amplified PTH actions in IL-6−/− earlier than IL-6+/+ marrow cultures. Blocking sIL-6R signaling with sgp130 (soluble glycoprotein 130 receptor) inhibited PTH-dependent hematopoietic cell expansion in IL-6−/− marrow. In the skeletal system, although intermittent PTH administration to IL-6+/+ and IL-6−/− mice resulted in similar anabolic actions, blocking sIL-6R significantly attenuated PTH anabolic actions. sIL-6R showed no direct effects on osteoblast proliferation or differentiation in vitro; however, it up-regulated myeloid cell expansion and production of the mesenchymal stem cell recruiting agent, TGF-β1 in the bone marrow microenvironment. Collectively, sIL-6R demonstrated orphan function and mediated PTH anabolic actions in bone in association with support of myeloid lineage cells in the hematopoietic system.  相似文献   

7.
We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS+ strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS+ vaccines induced a balanced Th1/Th2 immune response while the RpoS strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS+ strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts.  相似文献   

8.

Background

Interferon-γ receptor 1 (IFN-γR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-γR1 deficiency.

Methods and Findings

We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1 +/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1 −/− recipients. However, Ifngr1 −/− mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-γR1-deficient humans, infected Ifngr1 −/− mice displayed very high serum IFN-γ levels before HSCT. The administration of a recombinant IFN-γ-expressing AAV vector to Ifngr1 −/− naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1 −/− × Ifng −/− double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-γ depletion in infected Ifngr1 −/− mice in vivo allowed subsequent engraftment.

Conclusions

High serum IFN-γ concentration is both necessary and sufficient for graft rejection in IFN-γR1-deficient mice, inhibiting the development of heterologous, IFN-γR1-expressing, haematopoietic cell lineages. These results confirm that IFN-γ is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-γR1-deficient patients through IFN-γ depletion from the blood. They further raise the possibility that depleting IFN-γ may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.  相似文献   

9.
The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1−/− mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1) infection. CD200R1−/− peritoneal macrophages demonstrated a 70–75% decrease in the generation of IL-6 and CCL5 (Rantes) in response to the TLR2 agonist Pam2CSK4 and to HSV-1. CD200R1−/− macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1−/− mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1−/− mice and CD200R1−/− fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in “licensing” pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.  相似文献   

10.
Involvement of nitrate reductase and pyoverdine in the competitiveness of the biocontrol strain Pseudomonas fluorescens C7R12 was determined, under gnotobiotic conditions, in two soil compartments (bulk and rhizosphere soil), with the soil being kept at two different values of matric potential (−1 and −10 kPa). Three mutants affected in the synthesis of either the nitrate reductase (Nar), the pyoverdine (Pvd), or both (Nar Pvd) were used. The Nar and Nar Pvd mutants were obtained by site-directed mutagenesis of the wild-type strain and of the Pvd mutant, respectively. The selective advantage given by nitrate reductase and pyoverdine to the wild-type strain was assessed by measuring the dynamic of each mutant-to-total-inoculant (wild-type strain plus mutant) ratio. All three mutants showed a lower competitiveness than the wild-type strain, indicating that both nitrate reductase and pyoverdine are involved in the fitness of P. fluorescens C7R12. The double mutant presented the lowest competitiveness. Overall, the competitive advantages given to C7R12 by nitrate reductase and pyoverdine were similar. However, the selective advantage given by nitrate reductase was more strongly expressed under conditions of lower aeration (−1 kPa). In contrast, the selective advantage given by nitrate reductase and pyoverdine did not differ in bulk and rhizosphere soil, indicating that these bacterial traits are not specifically involved in the rhizosphere competence but rather in the saprophytic ability of C7R12 in soil environments.  相似文献   

11.
12.
Prevention of microbial adhesion and detachment of adhering microorganisms from surfaces is important in many environmental, industrial, and medical applications. Fluid shear is an obvious parameter for stimulating microbial detachment from surfaces, but recently it has been pointed out that a passing air-liquid interface also has potential in stimulating microbial detachment. In the present study, the ability of microbubbles to stimulate detachment of bacterial strains from a glass surface is compared with the effects of fluid flow. Adhesion and detachment of Actinomyces naeslundii T14V-J1, Streptococcus oralis J22, and their coadhering aggregates were studied on glass, mounted in a parallel plate flow chamber. High fluid wall shear rates (11,000 to 16,000 s−1) were established in a laminar flow regime in the absence and presence of microbubbles. Wall shear rates stimulated detachment ranging from 70% to 30% for S. oralis and A. naeslundii, respectively. Coadhering aggregates were detached up to 54%. The presence of microbubbles in the flow increased the detachment of A. naeslundii within 2 min of flow from 40% in the absence of microbubbles to 98%, while detachment of neither S. oralis nor coadhering aggregates was affected by the presence of microbubbles. In summary, extremely high fluid flows can be effective in stimulating microbial detachment, depending on the strain involved. The addition of microbubbles to the flow allows the detachment of tenaciously adhering bacteria not detached by flow alone, but not of adhering coaggregates.  相似文献   

13.
The competitiveness of a Rhizobium leguminosarum strain was investigated at two separate locations in field inoculation studies on commercially grown peas. The soil at each location (sites I and II) contained an indigenous R. leguminosarum population of ca. 3 × 104 rhizobia per g of soil. At site I it was necessary to use an inoculum concentration as large as 4 × 107 CFU ml−1 (2 × 106 bacteria seed−1) to establish the inoculum strain in the majority of nodules (73%). However, at site II the inoculum strain formed only 33% of nodules when applied at this (107 CFU ml−1) level. Establishment could not be further improved by increasing the inoculum concentration even as high as 109 CFU ml−1 (9.6 × 107 bacteria seed−1). The inoculum strain could be detected at both sites 19 months after inoculation. Analysis by intrinsic antibiotic resistance patterns and plasmid DNA profiles indicated that a dominant strain(s) and plasmid pool existed among the indigenous population at site II. Competition experiments were carried out under laboratory conditions between a dominant indigenous isolate and the inoculum strain. Both strains were shown to be equally competitive.  相似文献   

14.
Salmonella enterica serovar Typhimurium has been extensively exploited as live attenuated vaccines (LAV) which generally confers better protection than killed or subunit vaccines. However, many LAV are limited by their inherent ability to access systemic organs in many of the vaccinated hosts, especially those which are immunocompromised. We evaluated the efficacy of a live-attenuated SPI2-deficient (ΔssaV) S. Typhimurium vaccine candidate (MT13) that additionally devoids the ferric uptake regulator (fur). We used specific pathogen free (SPF) streptomycin-pretreated mouse colitis model that included healthy C57BL/6 and immunocompromised iNos −/−, IL10−/− and CD40L−/− in the background of C57BL/6 mice to assess the efficacy of developed vaccine candidate. In our study, the S. Typhimurium MT13 strain was established as a safe vaccine candidate to be administered in immunocompromised mice as it was found to be systemically attenuated without conferring significant pathological signs and growth defect within the host. In bacterial challenge experiment, the MT13-vaccinated C57BL/6 mice were protected from subsequent wild-type S. Typhimurium infection by inducing proficient mucosal immunity. The MT13 strain elicited efficient O-antigen specific mucosal secretory IgA associated protective response which was comparable with its parental ssaV mutant. Vaccination with MT13 also showed proficient T-cell activation in host mice; which has direct relation with pathogen clearance from host tissues. Collectively, these data implicate the possible application of SPI-2 deficient fur mutant (MT13) as a novel live attenuated vaccine strain with adept immunogenicity and improved safety, even in immunocompromised hosts. Further, this vaccine candidate can be employed to express heterologous antigens targeted against several other diseases, especially related to enterocolitic pathogens.  相似文献   

15.
Early (4 h) adsorption of Rhizobium meliloti L5-30 in low numbers to alfalfa roots in mineral solution was examined for competition with other bacterial strains. All tested competitor strains decreased the adsorption of L5-30 by extents which depended on the strain and its concentration. The decrease of adsorption by R. meliloti competitors (all of them infective in alfalfa) was nearly complete at saturation (97 to 99% decrease). All other heterologous rhizobia and Agrobacterium tumefaciens at saturating concentrations (106 to 107 per ml) decreased adsorption of L5-30 only partially, less than 60%. The differential effects of homologous and heterologous competitors indicate that initial adsorption of R. meliloti to the root surface of its host occurs in symbiont-specific as well as nonspecific modes and suggest the existence of binding sites on roots which are highly selective for the specific microsymbiont in the presence of other heterologous bacteria even in very unfavorable (less than 10−4) symbiont-competitor concentration ratios.  相似文献   

16.
Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K+ channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4−/−, Rgs6−/−, and Rgs4−/−:Rgs6−/− mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6−/− mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6−/− and Gβ5−/− mice, suggest that the partial rescue of phenotypes in Rgs4−/−:Rgs6−/− mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.  相似文献   

17.
Cleared lysates of a proteolytic (Prt+) strain and a naturally occurring non-proteolytic (Prt) variant of Streptococcus cremoris Wg2 contain equal amounts of covalently closed circular plasmid DNA. An analysis of this plasmid DNA by agarose gel electrophoresis revealed the presence of at least five different plasmid species in the Prt+ strain and only three plasmid species in the Prt variant. Curing studies with acriflavine indicated that a 16-megadalton plasmid determined proteolytic activity in the Prt+ strain. In energy-limited chemostats inoculated with both strains it was observed that the Prt+ strain was replaced by the Prt variant. This effect was most apparent when the pH of the culture was fixed at a value above 6.3. No selection for the Prt variant was observed at pH 5.9. Since the two types of organisms contain equal amounts of plasmid DNA, it was concluded that the energy gain of the Prt variants at pH values above 6.0 probably has to be found in protein synthesis rather than in plasmid DNA synthesis.  相似文献   

18.
Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt+/+ mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt−/− mice did not. Compared with Pemt+/+ mice, Pemt−/− mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt−/− mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt−/− mice. Furthermore, Pemt+/+ mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.  相似文献   

19.
Changes in histone acetylation occur during oocyte development and maturation, but the role of specific histone deacetylases in these processes is poorly defined. We report here that mice harboring Hdac1 −/+/Hdac2 −/− or Hdac2 −/− oocytes are infertile or sub-fertile, respectively. Depleting maternal HDAC2 results in hyperacetylation of H4K16 as determined by immunocytochemistry—normal deacetylation of other lysine residues of histone H3 or H4 is observed—and defective chromosome condensation and segregation during oocyte maturation occurs in a sub-population of oocytes. The resulting increased incidence of aneuploidy likely accounts for the observed sub-fertility of mice harboring Hdac2 −/− oocytes. The infertility of mice harboring Hdac1 −/+/Hdac2 −/−oocytes is attributed to failure of those few eggs that properly mature to metaphase II to initiate DNA replication following fertilization. The increased amount of acetylated H4K16 likely impairs kinetochore function in oocytes lacking HDAC2 because kinetochores in mutant oocytes are less able to form cold-stable microtubule attachments and less CENP-A is located at the centromere. These results implicate HDAC2 as the major HDAC that regulates global histone acetylation during oocyte development and, furthermore, suggest HDAC2 is largely responsible for the deacetylation of H4K16 during maturation. In addition, the results provide additional support that histone deacetylation that occurs during oocyte maturation is critical for proper chromosome segregation.  相似文献   

20.
Soil salinity is the main constraint for crop productivity in many parts of the world. Application of silicon (Si) and chitosan (Chi) can improve crop growth under saline soil conditions. The current study was aimed to examine the effects of Si and Chi on mitigation of salinity, morphological and physiological attributes as well as the antioxidant system of maize (Zea mays L.) under saline soil conditions. A field experiment was conducted that comprised of nine treatments as follows: (i) Control (no amendment), (ii) Silicon 40 kg ha−1 (Si1), (iii) Chitosan 15 kg ha−1 (Chi1), (iv) Si1 + Chi1, (v) Silicon 80 kg ha−1 (Si2), (vi) Chitosan 30 kg ha−1 (Chi2), (vii) Si2 + Chi2, (viii) Si1 + Chi2 and (ix) Si2 + Chi1. Application of Si and Chi substantially improved the morphological and physiological attributes as well as antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of maize plants, and combined application of Si and Chi was more effective when compared with Si and Chi treatments separately. Membrane stability index was improved by 25%, relative water content by 26%, chlorophyll a by 69% and b by 56% with combined application of Si and chitosan (Si2 + Chi2) compared with control. The SOD, POD and CAT increased by 36%, 38% and 65% with Si2 + Chi2 compared with control. The results suggest that Si and Chi application is the possible option for alleviating salinity stress in maize plant. Further research is suggested to examine Si and Chi effects on various crop''s growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号