首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast prions [PSI+] and [PIN+] are self-propagating amyloid aggregates of the Gln/Asn-rich proteins Sup35p and Rnq1p, respectively. Like the mammalian PrP prion "strains," [PSI+] and [PIN+] exist in different conformations called variants. Here, [PSI+] and [PIN+] variants were used to model in vivo interactions between co-existing heterologous amyloid aggregates. Two levels of structural organization, like those previously described for [PSI+], were demonstrated for [PIN+]. In cells with both [PSI+] and [PIN+] the two prions formed separate structures at both levels. Also, the destabilization of [PSI+] by certain [PIN+] variants was shown not to involve alterations in the [PSI+] prion size. Finally, when two variants of the same prion that have aggregates with distinct biochemical characteristics were combined in a single cell, only one aggregate type was propagated. These studies demonstrate the intracellular organization of yeast prions and provide insight into the principles of in vivo amyloid assembly.  相似文献   

2.
The yeast [PSI(+)], [URE3], and [PIN(+)] genetic elements are prion forms of Sup35p, Ure2p, and Rnq1p, respectively. Overexpression of Sup35p, Ure2p, or Rnq1p leads to increased de novo appearance of [PSI(+)], [URE3], and [PIN(+)], respectively. This inducible appearance of [PSI(+)] was shown to be dependent on the presence of [PIN(+)] or [URE3] or overexpression of other yeast proteins that have stretches of polar residues similar to the prion-determining domains of the known prion proteins. In a similar manner, [PSI(+)] and [URE3] facilitate the appearance of [PIN(+)]. In contrast to these positive interactions, here we find that in the presence of [PIN(+)], [PSI(+)] and [URE3] repressed each other's propagation and de novo appearance. Elevated expression of Hsp104 and Hsp70 (Ssa2p) had little effect on these interactions, ruling out competition between the two prions for limiting amounts of these protein chaperones. In contrast, we find that constitutive overexpression of SSA1 but not SSA2 cured cells of [URE3], uncovering a specific interaction between Ssa1p and [URE3] and a functional distinction between these nearly identical Hsp70 isoforms. We also find that Hsp104 abundance, which critically affects [PSI(+)] propagation, is elevated when [URE3] is present. Our results are consistent with the notion that proteins that have a propensity to form prions may interact with heterologous prions but, as we now show, in a negative manner. Our data also suggest that differences in how [PSI(+)] and [URE3] interact with Hsp104 and Hsp70 may contribute to their antagonistic interactions.  相似文献   

3.
The [PSI+] prion determinant of Saccharomyces cerevisiae causes nonsense suppressor phenotype due to a reduced function of the translation termination factor Sup35 (eRF3) polymerized into amyloid fibrils. Prion state of the Rnq1 protein, [PIN+], is required for the [PSI+] de novo generation but not propagation. Yeast [psi-] [PIN+] cells overproducing Sup35 can exhibit nonsense suppression without generation of a stable [PSI+]. Here, we show that in such cells, most of Sup35 represents amyloid polymers, although the remaining Sup35 monomer is sufficient for normal translation termination. The presence of these polymers strictly depends on [PIN+], suggesting that their maintenance relies on efficient generation de novo rather than inheritance. Sup35 polymers contain Rnq1, confirming a hypothesis that Rnq1 polymers seed Sup35 polymerization. About 10% of cells overproducing Sup35 form colonies on medium selective for suppression, which suggests that the proportion of Sup35 monomers to polymers varies between cells of transformants, allowing selection of cells deficient for soluble Sup35. A hybrid Sup35 with the N-terminal domain replaced for 66 glutamine residues also polymerizes and can cause nonsense suppression when overproduced. The described polymers of these proteins differ from the [PSI+] polymers by poor heritability and very high frequency of the de novo appearance, thus being more similar to amyloids than to prions.  相似文献   

4.
Prions are infectious, self-propagating protein conformations. Rnq1 is required for the yeast Saccharomyces cerevisiae prion [PIN(+)], which is necessary for the de novo induction of a second prion, [PSI(+)]. Here we isolated a [PSI(+)]-eliminating mutant, Rnq1Delta100, that deletes the nonprion domain of Rnq1. Rnq1Delta100 inhibits not only [PSI(+)] prion propagation but also [URE3] prion and huntingtin's polyglutamine aggregate propagation in a [PIN(+)] background but not in a [pin(-)] background. Rnq1Delta100, however, does not eliminate [PIN(+)]. These findings are interpreted as showing a possible involvement of the Rnq1 prion in the maintenance of heterologous prions and polyQ aggregates. Rnq1 and Rnq1Delta100 form a sodium dodecyl sulfate-stable and Sis1 (an Hsp40 chaperone protein)-containing coaggregate in [PIN(+)] cells. Importantly, Rnq1Delta100 is highly QN-rich and prone to self-aggregate or coaggregate with Rnq1 when coexpressed in [pin(-)] cells. However, the [pin(-)] Rnq1-Rnq1Delta100 coaggregate does not represent a prion-like aggregate. These findings suggest that [PIN(+)] Rnq1-Rnq1Delta100 aggregates interact with other transmissible and nontransmissible amyloids to destabilize them and that the nonprion domain of Rnq1 plays a crucial role in self-regulation of the highly reactive QN-rich prion domain of Rnq1.  相似文献   

5.
Prions affect the appearance of other prions: the story of [PIN(+)   总被引:13,自引:0,他引:13  
Derkatch IL  Bradley ME  Hong JY  Liebman SW 《Cell》2001,106(2):171-182
Prions are self-propagating protein conformations. Recent research brought insight into prion propagation, but how they first appear is unknown. We previously established that the yeast non-Mendelian trait [PIN(+)] is required for the de novo appearance of the [PSI(+)] prion. Here, we show that the presence of prions formed by Rnq1 or Ure2 is sufficient to make cells [PIN(+)]. Thus, [PIN(+)] can be caused by more than one prion. Furthermore, an unbiased functional screen for [PIN(+)] prions uncovered the known prion gene, URE2, the proposed prion gene, NEW1, and nine novel candidate prion genes all carrying prion domains. Importantly, the de novo appearance of Rnq1::GFP prion aggregates also requires the presence of other prions, suggesting the existence of a general mechanism by which the appearance of prions is enhanced by heterologous prion aggregates.  相似文献   

6.
Prions are self-propagating, infectious protein conformations. The mammalian prion, PrP(Sc), responsible for neurodegenerative diseases like bovine spongiform encephalopathy (BSE; "mad cow" disease) and Creutzfeldt-Jakob's disease, appears to be a beta-sheet-rich amyloid conformation of PrP(c) that converts PrP(c) into PrP(Sc). However, an unequivocal demonstration of "protein-only" infection by PrP(Sc) is still lacking. So far, protein only infection has been proven for three prions, [PSI(+)], [URE3] and [Het-s], all of fungal origin. Considerable evidence supports the hypothesis that another protein, the yeast Rnq1p, can form a prion, [PIN(+)]. While Rnq1p does not lose any known function upon prionization, [PIN(+)] has interesting positive phenotypes: facilitating the appearance and destabilization of other prions as well as the aggregation of polyglutamine extensions of the Huntingtin protein. Here, we polymerize a Gln/Asn-rich recombinant fragment of Rnq1p into beta-sheet-rich amyloid-like aggregates. While the method used for [PSI(+)] and [URE3] infectivity assays did not yield protein-only infection for the Rnq1p aggregates, we did successfully obtain protein-only infection by modifying the protocol. This work proves that [PIN(+)] is a prion mediated by amyloid-like aggregates of Rnq1p, and supports the hypothesis that heterologous prions affect each other's appearance and propagation through interaction of their amyloid-like regions.  相似文献   

7.
The glutamine- and asparagine-rich Rnq1p protein in Saccharomyces cerevisiae can exist in the cell as a soluble monomer or in one of several aggregated, infectious, prion forms called [PIN(+)]. Interest in [PIN(+)] is heightened by its ability to promote the conversion of other proteins into a prion or an aggregated amyloid state. However, little is known about the function of Rnq1p, which makes it difficult to assay the phenotypes associated with its normal vs. prion forms. In this chapter, we describe methods used to detect [PIN(+)] and distinguish between different variations of the prion. Genetic methods are based on the ability of the [PIN(+)] prion to facilitate the appearance of another yeast prion, [PSI(+)], which has an easily detectable phenotype. Biochemical methods exploit the fact that the [PIN(+)] prion exists in the yeast cytosol in the form of large aggregates, composed of SDS-stable subparticles. Sucrose gradient centrifugation, agarose SDS electrophoresis and GFP fusions are used to distinguish between aggregates and subparticles from different [PIN(+)] variants.  相似文献   

8.
The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN(+)] and [PSI(+)], it does not overcome the requirement of cells being [PIN(+)] to form the [PSI(+)] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI(+)] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN(+)] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI(+)] prion formation.  相似文献   

9.
Yeast Prions     
《朊病毒》2013,7(2):94-100
Prions (infectious proteins) analogous to the scrapie agent have been identified in Saccharomyces cerevisiae and Podospora anserina based on their special genetic characteristics. Each is a protein acting as a gene, much like nucleic acids have been shown to act as enzymes. The [URE3], [PSI+], [PIN+] and [Het-s] prions are self-propagating amyloids of Ure2p, Sup35p, Rnq1p and the HET-s protein, respectively. The [b] and [C] prions are enzymes whose precursor activation requires their own active form. [URE3] and [PSI+] are clearly diseases, while [Het-s] and [b] carry out normal cell functions. Surprisingly, the prion domains of Ure2p and Sup35p can be randomized without loss of ability to become a prion. Thus amino acid content and not sequence determine these prions. Shuffleability also suggests amyloids with a parallel in-register b-sheet structure.  相似文献   

10.
Rnq1: an epigenetic modifier of protein function in yeast   总被引:1,自引:0,他引:1  
Two protein-based genetic elements (prions) have been identified in yeast. It is not clear whether other prions exist, nor is it understood how one might find them. We established criteria for searching protein databases for prion candidates and found several. The first examined, Rnq1, exists in distinct, heritable physical states, soluble and insoluble. The insoluble state is dominant and transmitted between cells through the cytoplasm. When the prion-like region of Rnq1 was substituted for the prion domain of Sup35, the protein determinant of the prion [PSI+], the phenotypic and epigenetic behavior of [PSI+] was fully recapitulated. These findings identity Rnq1 as a prion, demonstrate that prion domains are modular and transferable, and establish a paradigm for identifying and characterizing novel prions.  相似文献   

11.
Osherovich LZ  Weissman JS 《Cell》2001,106(2):183-194
The yeast prion [PSI(+)] results from self-propagating aggregates of Sup35p. De novo formation of [PSI(+)] requires an additional non-Mendelian trait, thought to result from a prion form of one or more unknown proteins. We find that the Gln/Asn-rich prion domains of two proteins, New1p and Rnq1p, can control susceptibility to [PSI(+)] induction as well as enhance aggregation of a human glutamine expansion disease protein. [PSI(+)] inducibility results from gain-of-function properties of New1p and Rnq1p aggregates rather than from inactivation of the normal proteins. These studies suggest a molecular basis for the epigenetic control of [PSI(+)] inducibility and may reveal a broader role for this phenomenon in the physiology of protein aggregation.  相似文献   

12.
Yeast prions are inherited through proteins that exist in alternate, self-perpetuating conformational states. The mechanisms by which these states arise and are maintained are still poorly defined. Here we demonstrate for the first time that Sis1, a member of the Hsp40 chaperone family, plays a critical role in the maintenance of a prion. The prion [RNQ+] is formed by Rnq1, which is present in the same physical complex as Sis1, but only when Rnq1 is in the prion state. The G/F domain of Sis1 is dispensable for rapid growth on rich medium, but is required for [RNQ+] maintenance, distinguishing essential regions of Sis1 from those needed for prion interaction. A specific Sis1 deletion mutant altered the physical aggregation pattern of Rnq1 without curing the prion. This variant state propagated in a heritable fashion after wild-type Sis1 function was restored, indicating that multiple physical states are compatible with prion maintenance and that changes in chaperone activity can create prion variants. Using a prion chimera we demonstrate that the prion-determinant domain of Rnq1 is genetically sufficient for control by Sis1.  相似文献   

13.
Prions (infectious proteins) cause fatal neurodegenerative diseases in mammals. In the yeast Saccharomyces cerevisiae, many toxic and lethal variants of the [PSI+] and [URE3] prions have been identified in laboratory strains, although some commonly studied variants do not seem to impair cell growth. Phylogenetic analysis has revealed four major clades of S. cerevisiae that share histories of two prion proteins and largely correspond to different ecological niches of yeast. The [PIN+] prion was most prevalent in commercialized niches, infrequent among wine/vineyard strains, and not observed in ancestral isolates. As previously reported, the [PSI+] and [URE3] prions are not found in any of these strains. Patterns of heterozygosity revealed genetic mosaicism and indicated extensive outcrossing among divergent strains in commercialized environments. In contrast, ancestral isolates were all homozygous and wine/vineyard strains were closely related to each other and largely homozygous. Cellular growth patterns were highly variable within and among clades, although ancestral isolates were the most efficient sporulators and domesticated strains showed greater tendencies for flocculation. [PIN+]-infected strains had a significantly higher likelihood of polyploidy, showed a higher propensity for flocculation compared to uninfected strains, and had higher sporulation efficiencies compared to domesticated, uninfected strains. Extensive phenotypic variability among strains from different environments suggests that S. cerevisiae is a niche generalist and that most wild strains are able to switch from asexual to sexual and from unicellular to multicellular growth in response to environmental conditions. Our data suggest that outbreeding and multicellular growth patterns adapted for domesticated environments are ecological risk factors for the [PIN+] prion in wild yeast.  相似文献   

14.
Prion "variants" or "strains" are prions with the identical protein sequence, but different characteristics of the prion infection: e.g. different incubation periods for scrapie strains or different phenotype intensities for yeast prion variants. We have shown that infectious amyloids of the yeast prions [PSI+], [URE3] and [PIN+] each have an in-register parallel β-sheet architecture. Moreover, we have pointed out that this amyloid architecture can explain how one protein can faithfully transmit any of several conformations to new protein monomers. This explains how proteins can be genes.  相似文献   

15.
Fan Q  Park KW  Du Z  Morano KA  Li L 《Genetics》2007,177(3):1583-1593
Yeast prions are a group of non-Mendelian genetic elements transmitted as altered and self-propagating conformations. Extensive studies in the last decade have provided valuable information on the mechanisms responsible for yeast prion propagation. How yeast prions are formed de novo and what cellular factors are required for determining prion "strains" or variants--a single polypeptide capable of existing in multiple conformations to result in distinct heritable phenotypes--continue to defy our understanding. We report here that Sse1, the yeast ortholog of the mammalian heat-shock protein 110 (Hsp110) and a nucleotide exchange factor for Hsp70 proteins, plays an important role in regulating [PSI+] de novo formation and variant determination. Overproduction of the Sse1 chaperone dramatically enhanced [PSI+] formation whereas deletion of SSE1 severely inhibited it. Only an unstable weak [PSI+] variant was formed in SSE1 disrupted cells whereas [PSI+] variants ranging from very strong to very weak were formed in isogenic wild-type cells under identical conditions. Thus, Sse1 is essential for the generation of multiple [PSI+] variants. Mutational analysis further demonstrated that the physical association of Sse1 with Hsp70 but not the ATP hydrolysis activity of Sse1 is required for the formation of multiple [PSI+] variants. Our findings establish a novel role for Sse1 in [PSI+] de novo formation and variant determination, implying that the mammalian Hsp110 may likewise be involved in the etiology of protein-folding diseases.  相似文献   

16.
The Sup35 protein can exist in a non-infectious form or in various infectious forms called [PSI+] prion variants (or prion strains). Each of the different [PSI+] prion variants converts non-infectious Sup35 molecules into that prion variant's infectious form. One definition of a 'prion domain' is the minimal fragment of a prion protein that is necessary and sufficient to maintain the prion form. We now demonstrate that the Sup35 N region (residues 1-123), which is frequently referred to as the 'prion domain', is insufficient to maintain the weak or strong [PSI+] variants per se, but appears to maintain them in an 'undifferentiated' [PSI+] state that can differentiate into weak or strong [PSI+] variants when transferred to the full-length Sup35 protein. In contrast, Sup35 residues 1-137 are necessary and sufficient to faithfully maintain weak or strong [PSI+] variants. This implicates Sup35 residues 124-137 in the variant-specific maintenance of the weak or strong [PSI+] forms. Structure predictions indicate that the residues in the 124-137 region form an alpha-helix and that the 1-123 region may have beta structure. In view of these findings, we discuss a plausible molecular basis for the [PSI+] prion variants as well as the inherent difficulties in defining a 'prion domain'.  相似文献   

17.
《朊病毒》2013,7(3):179-184
Yeast prion determinants are related to polymerization of some proteins into amyloid-like fibers. The [PSI+] determinant reflects polymerization of the Sup35 protein. Fragmentation of prion polymers by the Hsp104 chaperone represents a key step of the prion replication cycle. The frequency of fragmentation varies depending on the structure of the prion polymers and defines variation in the prion phenotypes, e.g., the suppressor strength of [PSI+] and stability of its inheritance. Besides [PSI+], overproduction of Sup35 can produce nonheritable phenotypically silent Sup35 amyloid-like polymers. These polymers are fragmented poorly and are present due to efficient seeding with the Rnq1 prion polymers, which occurs by several orders of magnitude more frequently than seeding of [PSI+] appearance. Such Sup35 polymers resemble human nonprion amyloids by their nonheritability, mode of appearance and increased size. Thus, a single protein, Sup35, can model both prion and nonprion amyloids. In yeast, these phenomena are distinguished by the frequency of polymer fragmentation. We argue that in mammals the fragmentation frequency also represents a key factor defining differing properties of prion and nonprion amyloids, including infectivity. By analogy with the Rnq1 seeding of nonheritable Sup35 polymers, the “species barrier” in prion transmission may be due to seeding by heterologous prion of nontransmissible type of amyloid, rather than due to the lack of seeding.  相似文献   

18.
Yeast prions are protein-based genetic elements that produce phenotypes through self-perpetuating changes in protein conformation. For the prion [PSI(+)] this protein is Sup35, which is comprised of a prion-determining region (NM) fused to a translational termination region. [PSI(+)] strains (variants) with different heritable translational termination defects (weak or strong) can exist in the same genetic background. [PSI(+)] variants are reminiscent of mammalian prion strains, which can be passaged in the same mouse strain yet have different disease latencies and brain pathologies. We found that [PSI(+)] variants contain different ratios of Sup35 in the prion and non-prion state that correlate with different translation termination efficiencies. Indeed, the partially purified prion form of Sup35 from a strong [PSI(+)] variant converted purified NM much more efficiently than that of several weak variants. However, this difference was lost in a second round of conversion in vitro. Thus, [PSI(+)] variants result from differences in the efficiency of prion-mediated conversion, and the maintenance of [PSI(+)] variants involves more than nucleated conformational conversion (templating) to NM alone.  相似文献   

19.
Zuzana ?i?ková 《朊病毒》2013,7(4):291-298
The formation of fibrillar amyloid is most often associated with protein conformational disorders such as prion diseases, Alzheimer disease and Huntington disease. Interestingly, however, an increasing number of studies suggest that amyloid structures can sometimes play a functional role in normal biology. Several proteins form self-propagating amyloids called prions in the budding yeast Saccharomyces cerevisiae. These unique elements operate by creating a reversible, epigenetic change in phenotype. While the function of the non-prion conformation of the Rnq1 protein is unclear, the prion form, [RNQ+], acts to facilitate the de novo formation of other prions to influence cellular phenotypes. The [RNQ+] prion itself does not adversely affect the growth of yeast, but the overexpression of Rnq1p can form toxic aggregated structures that are not necessarily prions. The [RNQ+] prion is also involved in dictating the aggregation and toxicity of polyglutamine proteins ectopically expressed in yeast. Thus, the [RNQ+] prion provides a tractable model that has the potential to reveal significant insight into the factors that dictate how amyloid structures are initiated and propagated in both physiological and pathological contexts.  相似文献   

20.
ABSTRACT: BACKGROUND: Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. RESULTS: Here we show that both the prion domain of Sup35 (Sup35-NM) and the Ure2 protein (Ure2p) form inclusion bodies (IBs) displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. CONCLUSIONS: An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号