首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO) activities and polyamines (PAs), proline contents in water hyacinth leaves under Mercury (Hg) stress was investigated after 6 days treatment. The results showed that free putrescine (Put) content increased, the contents of free spermidine (Spd) and spermine (Spm) and the (Spd + Spm)/Put ratio in water hyacinth leaves decreased significantly with the increase of the Hg concentrations. Hg stress also disturbed the activities of ADC, ODC and PAO and caused changes on proline content. Compared to the Hg-treatment only, exogenous Spd (0.1 mM) significantly reduced the accumulation of free Put, increased the contents of free Spd and Spm and the ratio of (Spd + Spm)/Put in water hyacinth leaves. Furthermore, exogenous Spd enhanced the activities of ADC, ODC and PAO and significantly increased proline content. The PS-conjugated PAs and PIS-bound PAs changed in the same trend as free PAs. These results suggest that exogenous Spd can alleviate the metabolic disturbance of polyamines caused by Hg in water hyacinth leaves.  相似文献   

2.
3.
A new assay for the evaluation of spermidine (Spd) synthase activity was developed. It involves a coupled reaction and avoids the use of decarboxylated S-adenosylmethionine, which is unstable and not easily available. This assay was applied to assess changes in enzyme activity in oat leaves subjected to osmotic stress in the dark. The results indicate that osmotically-induced putrescine (Put) accumulation in cereals results not only from the activation of the arginine decarboxylase pathway, but also from the inhibition of the activity of Spd synthase, the enzyme which catalyzes the transformation of Put to Spd. Other possibilities which could contribute to the decline of Spd and spermine levels under osmotic stress are also discussed.Abbreviations ADC arginine decarboxylase - Dap diaminopropane - DFMA -difluoromethylarginine - MGBG methylglyoxal-bis-guanylhydrazone - MTA 5-deoxy-5-methylthioadenosine - ODC ornithine decarboxylase - PA polyamines - PAO polyamine oxidase - PCA perchloric acid - PLP pyridoxal phosphate - Put putrescine - SAM S-adenosylmethionine - dSAM decarboxylated S-adenosylmethionine - SAMDC S-adenosylmethionine decarboxylase - Spd spermidine - Spm spermine  相似文献   

4.
Both polyamines and kinetin could retard the loss of chlorophyll during dark-induced senescence in excised frond of Lernna aequinoctialis 6746. The effect of polyamines on retarding the chlorophyll loss was stronger than that of kinetin. Kinetin remarkably inhibited the loss of soluble proteins and the increase of protease activity, while no similar effects were observed from polyamines. An inhibitor of polyamine biosynthesis, methylglyoxal bis- (guanyl- hydrazone) (MGBG), slightly increased the loss of chlorophyll and soluble proteins. During senescience, both the increase of putrescine (Put) content and the decrease of spermidine (Spd) content were inhibited by kinetin at the concentration of 0.05 mmol/L, but the spermine (Spm) level was not affected by kinetin. The arginine decarboxylase (ADC) activity was dominant in frond of Lemna aequinoctialis 6746. Kinetin slightly increased ADC activity, while it had no marked effect on ornithine decarboxylase (ODC) and s-adenosylmethionine decarboxylase (SAMDC). The possible relationship between polyamines and cytokinins in retarding senescence was also discussed.  相似文献   

5.
Effects of exogenous spermidine (Spd) on the reactive oxygen species level and polyamine metabolism against copper (Cu) stress in Alternanthera philoxeroides (Mart.) Griseb leaves were investigated. Cu treatment induced a marked accumulation of Cu and enhanced contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the generation rate of O2 ·−. It also significantly increased putrescine (Put) levels but lowered spermidine (Spd) and spermine (Spm) levels. The activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and polyamine oxidase (PAO) were all elevated with the increase of Cu concentration. However, application of exogenous Spd effectively decreased H2O2 content and the generation rate of O2 ·−, prevented Cu-induced lipid peroxidation and reduced Cu accumulation. Moreover, it declined level of endogenous Put and increased levels of Spd and Spm. Activities of ADC, ODC and PAO were all inhibited by exogenous Spd. The results indicated that application of exogenous Spd could enhance the tolerance of A. philoxeroides to Cu stress by reducing the reactive oxygen level and balancing polyamine metabolism.  相似文献   

6.
Arginine decarboxylase (ADC), ornithine decarboxylase (ODC), diamine oxydase (DAO) free amine and conjugated amine titers were estimated in leaf explants of Chrysanthemum morifolium Ramat. var. Spinder cultivated in vitro in relation to hormone treatment. Addition of benzyladenine (BA) to a basal medium caused the formation of buds on the explants. BA plus 2,4 dichlorophenoxyacetic acid (2,4 D) caused callus formation and proliferation. Formation of roots was obtained by addition of indolylacetic acid (IAA). Arginine decarboxylase (ADC) ornithine decarboxylase (ODC) and diamine oxidase (DAO) activities increased during the first days of culture when cell multiplication was rapid, followed by a sharp decline as the rate of cell division decreased and differentiation took place. DAO activities increased rapidly in proliferating and growing organs and decreased during maturity. This increase was concomitant with ADC and ODC activities and polyamine content (free and conjugated polyamines). The biosynthesis and oxidation of polyamines which occurred simultaneously in physiological states of intense metabolism such as cell division or organ formation were directly correlated. In callus cultures DAO activity was blocked throughout development and regulated neither the cellular levels of polyamines nor polyamine conjugates. Levels of polyamine conjugates were high in callus cultures throughout development. In foliar explants cultivated on a medium promoting callus, inhibition of ODC activity by DFMO (-DL-difluoromethylornithine, a specific enzyme-activated ODC inhibitor) resulting in an amide deficiency facilated the expression of differentiated cell function; substantial activation of DAO was observed until the emergence of the buds. On a medium promoting bud formation, -OH ethylhydrazine (DAO inhibitor) promoted callus formation without differentiation. In this system DAO activity was blocked and there were high levels of polyamines, especially polyamine conjugates, throughout the culture period. The relationship among free and conjugated polyamines related biosynthetic enzyme activities, DAO activities, cell division and organ formation is discussed.Abbreviations ADC = arginine decarboxylase - ODC = ornithine decarboxylase - DOA = diamine oxidase - DFMA = -DL-difluoromethylarginine - DFMO = -DL-difluoromethylornithine - Put = putrescine  相似文献   

7.
The seasonal changes of polyamine concentrations and arginine decarboxylase (ADC, EC 4.1.1. 1. 9)activities were investigated in the leaves of 4 ecotypes of reeds (Phragamites comrnunis Trinius)distributed over Hexi Corridor of Gansu province. The leaves of all ecotypes of reeds contained the same kind of polyamines and showed the same trend of decrement in total amuonts of potyamines with change of seasons. From May to September, the reeds which grow in arid and saline habitat maintained higher level of spermidine (Spd)and spermine (Spm)with no accumulation of putrescine (Put), resulting in low ratios of Put to other polyamine (Spd and Spm), whereas opposite results were observed in swamp reeds. These results indicate that the adaption of reeds to drought and salt stresses may correlate with Put synthesis via ADC pathway and the quick transformation of Put into Spd and Spm.  相似文献   

8.
In the present paper, correlation between free polyamines and growth of peach (Prunus persica cv. Yuzora) in vitro callus was investigated. Growth of the callus was divided into three phases based on measurement of fresh weight. Free polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm), could be detected during peach callus growth. Changes in free Put titers followed the callus growth rate, as shown by low and stable levels in the first stage, quick increase at the beginning of the second phase, and slow increase in the last phase, whereas fluctuations of Spd and Spm titers were aberrant from that of Put at early stage. Expressions of five key genes involved in polyamine biosynthesis were characterized, in which only the genes leading to Put synthesis, ADC (arginine decarboxylase) and ODC (ornithine decarboxylase), agreed with callus growth and fluctuation of Put titers. Treatment of the callus with D-arginine, an inhibitor of ADC, led to significant growth inhibition and enormous reduction of endogenous Put, coupled with obvious decrease of mRNA levels of ADC and ODC. Exogenous application of Put partially restored the callus growth, along with resumption of endogenous Put and expression levels of ADC and ODC. Spd and Spm titers experienced minor change in comparison to Put. The data presented here suggested that free Put played an important part in peach callus growth. Putative mechanisms or mode of action underlying the role of Put in peach callus growth and different expression patterns of the genes responsible for polyamine biosynthesis are also discussed.  相似文献   

9.
The effects of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO), and diamine oxidase (DAO) activities, the rate of superoxide radical (O 2 ·? ) generation and polyamine (PA), malondialdehyde (MDA), and H2O2 contents in Hydrocharis dubia (Bl.) Backer leaves under cadmium (Cd) toxicity were studied after 6-day treatment. Cd stress increased putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels. In addition, the activities of ADC, DAO, and PAO were increased, while that of ODC was decreased. Exogenous application of Spd markedly reversed these Cd-induced effects. It also significantly reduced the generation of O 2 ·? and H2O2 and prevented lipid peroxidation. These results suggest that exogenous Spd can enhance the tolerance of H. dubia to Cd. The maintenance of PA homeostasis was necessary for plant metal tolerance.  相似文献   

10.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

11.
γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响   总被引:1,自引:0,他引:1  
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片乌氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

12.
13.
We studied the effects of inhibitors of ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and spermidine synthase (Spd synthase) on organogenesis and the titers of polyamines (PA) and alkaloids in tobacco calli. DL--difluoromethylarginine (DFMA) and D-arginine (D-Arg), both inhibitors of ADC activity, were more effective than DL--difluoromethylornithine (DFMO), an inhibitor of ODC, in reducing titers of PA and the putrescine (Put)-derived alkaloids (nornicotine and nicotine). Dicyclohexylammonium sulfate (DCHA), an inhibitor of Spd synthase, was also more efficient than DFMO in reducing PA and alkaloid levels. Root organogenesis is inversely related to the titers of Put and alkaloids. Thus, DFMA and D-Arg, which strongly inhibit Put and alkaloid biosynthesis, markedly promote root organogenesis, while control callus with high Put and alkaloid content showed poor root organization. These results suggest that morphological differentiation is not required for activation of secondary metabolic pathways and support the view that ADC has a major role in the generation of Put going to the pyrrolidine ring of tobacco alkaloids.  相似文献   

14.
In the short-day plant, strawberry (Fragaria ananassa Duch.), polyamines (putrescine, spermidine and spermine), conjugated spermidine (water-insoluble compounds) and bound amines (putrescine, spermidine, phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine) accumulated in the shoot tips during floral induction and before floral emergence. Different associations of free amines and conjugated amines were observed during floral induction, as compared with the reproductive phase. During the whole period of floral development, phenylethylamine (an aromatic amine) was the predominant amine, representing 80 to 90% of the total free amine pool. Phenylethylamine conjugates (water-insoluble compounds) were the predominant amides observed prior to fertilization. These substances decreased drastically after fertilization. In vegetative shoot tips from plants grown continously under long days, free polyamines (putrescine, spermidine) and bound polyamines (putrescine, spermidine) were low and no change was observed. Free amines (spermine and phenylethylamine), bound aromatic amines (phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine), conjugated spermidine and phenylethylamine did not appear. Male-sterile flowers were distinguished by their lack of conjugated spermidine and phenylethyalamine and by a decrease in free phenylethylamine. In normal and sterile strawberry plants -DL-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ornithine decarboxylase (ODC), caused inhibition of flowering and free and polyamine conjugates. When putrescine was added, polyamine titers and flowering were restored. A similar treatment with -DL-difluoromethylarginine (DFMA), a specific, irreversible inhibitor of arginine decarboxylase (ADC), did not affect flowering and polyamine titers. These results suggest that ornithine decarboxylase (ODC) and polyamines are involved in regulating floral initiation in strawberry. The relationship between polyamines, aromatic amines, conjugates, floral initiation and male sterility is discussed.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - Put putrescine - Spd spermidine - Spm spermine - Phen phenylethylamine - 3H4M Phen 3-hydroxy, 4-methoxyphenylethylamine  相似文献   

15.
The effect of salt stress on proline (Pro) accumulation and its relationship with the changes occurring at the level of polyamine (PA) metabolism and tyramine were investigated in leaf discs of tomato (Lycopersicon esculentum). The rate of accumulation of Pro, PA and tyramine was higher in the salt-sensitive than in the salt-tolerant cultivar. In the salt-sensitive cultivar, Pro started to accumulate 4 h after the onset of the NaCl treatment, its maximum level being reached 27 h later. The lag phase was associated with a rapid decrease in putrescine (Put) and spermidine (Spd) and some increase in 1,3-diaminopropane (Dap), a product of Spd and/or spermine (Spm) oxidation. This was followed by an increase in agmatine (Agm), cadaverine (Cad), Spm and tyramine. α-DL-difluoromethylarginine (DFMA), an inhibitor of arginine decarboxylase (ADC, EC 4.1.1.19), induced a decrease in the Put level in both control and stressed discs, while α-DL-difluoromethylomithine (DFMO), an inhibitor of ornithine decarboxylase (ODC, EC 4.1.1.17), caused a decrease in Spd and Spm levels only in salinized discs. These data suggest that ADC is operating under both control and stress conditions, whereas ODC activity is promoted only in response to salt stress. DFMA also depressed the salt-induced Pro accumulation while DFMO did not inhibit this response. In salt-stressed leaf discs, the decrease in Spd level in response to methylglyoxal-bis-(guanylhydrazone) (MGBG) or cyclohexylammonium (CHA) treatment suggests that salt stress did not block SAM decarboxylase or Spd synthase activities. However, the increased level of Dap reflected a salt stress-promoted oxidation of PA. CHA and MGBG had no effect on Pro accumulation. Putrescine, Dap and especially tyramine supplied at low concentrations stimulated the Pro response which was, however, suppressed by application of Spm. Treatment with aminoguanidine, an inhibitor of diamine oxidases, also strongly inhibited Pro accumulation. These data suggest that salt-induced Pro accumulation in tomato leaf discs is closely related to changes in their PA metabolism, either via substrate-product relationships or regulatory effects at target(s) which remain to be characterized.  相似文献   

16.
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

17.
在幼穗发育过程中,不育系和保持系幼穗多胺含量先剧降后稳定或略回升,精氨酸脱羧酶活性快速下降,而二胶和多胺氧化酶活性缓慢下降。从雌雄蕊形成期到花粉母细胞形成期,不育系的多胺含量和精氨酸脱羧酶活性明显低于保持系;不过,两系二胺氧化酶和多胺氧化酶活性却差别不大。外施D-Arg抑制两系Put合成,也抑制以Put为前体的Spd的合成;外施MGBG抑制Spd和Spm的合成;同时,D-Arg或MGBG对不育系花粉育性影响不大,但明显降低保持系花粉育性,D-Arg+MGBG对花粉育性的降低效应更强;Put和pd+Spm可抵消(或部分抵消)D-Arg和MGBG的降低效应。且Put+Spd+Spm能使不育系花粉的育性得以轻度恢复。  相似文献   

18.
19.
多胺与激动素对稀脉浮萍离体叶状体衰老的影响   总被引:12,自引:0,他引:12  
多胺与KT 都可抑制暗诱导衰老的稀脉浮萍(Lem na aequinoctialis)离体叶状体的叶绿素损失,且多胺的作用大于KT。KT 还显著抑制蛋白质的损失与蛋白酶活性的上升,而多胺对此却无大的影响。0.05 m m ol/L的甲基乙二醛二脒基-腙(MGBG)轻微促进叶绿素和蛋白质的损失。0.05 m m ol/L的KT 可抑制衰老过程中腐胺(Put)的上升和亚精胺(Spd)的下降,而对精胺(Spm )无明显影响。在稀脉浮萍中,精氨酸脱羧酶(ADC)活性占优势。KT 可轻微促进ADC 活性,而对鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性无显著影响。讨论了多胺与细胞分裂素在抑制植物叶片衰老过程中作用途径的可能关系  相似文献   

20.
Changes in polyamine biosynthesis and elongation of etiolated rice coleoptiles ( Oryza sativa L. cv. Taichung Native 1) in response to fusicoccin (FC) and indoleacetic acid (IAA) were investigated. FC stimulated coleoptile elongation at concentrations higher than 1 μ M but caused a decrease in the levels of free putrescine, spermidine and sper-mine, as well as in the activities of arginine decarboxylase (ADC, EC 4.1.1.19) and S -adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50). The extent to which FC caused these effects was dependent on its concentration. Treatment with 100 μ M IAA also induced coleoptile elongation and resulted in a decrease in free spermidine/sper-mine and SAMDC activity. However, treatment with IAA resulted in an increase in free putrescine levels and ADC activity. The extent of coleoptile elongation and putrescine accumulation also depended on IAA concentration. α-Difluoromethylarginine (DFMA), an irreversible inhibitor of ADC. but not α-difluoromethylornithine (DFMO). an irreversible inhibitor of ODC (EC 4.1.1.17), inhibited the LAA-stimulated coleoptile elongation and putrescine accumulation. Addition of putrescine could not reverse the effect of DFMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号