首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A co-ordinated series of field experiments were conducted to consider the effects of elevated UV-B radiation applied directly to decomposing plant litter. Betula pubescens was decomposed under ambient and elevated UV-B (simulating a 15% ozone depletion) using outdoor irradiation facilities at Adventdalen, Norway (78° N), Abisko, Sweden (68° N), Amsterdam, The Netherlands (52° N,) and Patras, Greece (38° N). There was no significant effect of treatment on mass loss for samples collected after 2, 12 and 14 months decomposition at Amsterdam, or after 4 months decomposition at Adventdalen. Significant reductions in the mass loss of litter decomposing under elevated UV-B compared to ambient were found at the other 2 sites. The only effect of treatment on litter chemistry during decomposition was a significant reduction in the N concentration of material at Abisko and a significant increase in C:N at Patras for litter decomposing under elevated UV-B. Significant differences were found in the structure of the fungal community decomposing litter in Sweden, the only site to be tested. These data, and the few published studies of the response of decomposition to UV-B incident on litter suggest that, in the ecosystems and climates that have been studied, such direct effects are typically confined to the initial stages of decomposition, and are rather small in magnitude.  相似文献   

2.
Paul  Nigel D.  Rasanayagam  Sharima  Moody  Sandra A.  Hatcher  Paul E.  Ayres  Peter G. 《Plant Ecology》1997,128(1-2):297-308
Understanding the potential impact of ozone depletion on terrestrial ecosystems is constrained by lack of information on the effects of environmentally realistic UV-B doses on terrestrial organisms other than higher plants. Increasing UV-B may alter interactions between plants and consumers through direct effects on consumer organisms (herbivores, phytopathogens, decomposers, etc.). The effects of increasing UV-B on arthropods are not known. Significant UV-B effects on fungi have been reported, and may be either negative (inhibition of spore germination and mycelial growth) or positive (increased growth, induction of reproductive development and sporulation). However, in many cases consumers are unlikely to be directly exposed to UV-B in the field. In addition, UV action spectra for fungi suggest that this major group may be less sensitive to the effects of ozone depletion than higher plants. Host mediated effects of UV-B on consumers may include alterations in plant chemistry. While secondary metabolites such as phenolics may increase under increased UV-B, this is not invariably the case and evidence that such changes have significant effects on consumers is limited. In particular, there is no evidence that increased UV-B increases resistance of higher plants to fungal pathogens. Indeed, increased UV-B prior to inoculation results in no significant effect or increased disease. Such responses may be attributable to UV-B effects on host surface properties or on compounds other than phenolics. However, such changes are poorly known, and their potential effects on phytopathogens, herbivores or decomposers cannot be assessed. Understanding the effects of UV-B on terrestrial ecosystems is further limited since virtually nothing is known of possible impacts on higher trophic levels, i.e. predators, parasites or pathogens.  相似文献   

3.
Elevated UV-B radiation effects on experimental grassland communities   总被引:5,自引:0,他引:5  
Experimental grassland communities (turves) were exposed to supplemental levels of UV-B radiation (280–315 nm) at an outdoor facility, under treatment arrays of cellulose diacetate-filtered fluorescent lamps which also produce UV-A radiation (315–400 nm). Control treatments consisted of arrays of polyester-filtered lamps, which allowed for exposure to UV-A radiation alone, and arrays of unenergized lamps allowing for exposure to ambient levels of solar radiation.  相似文献   

4.
蒽和UV—B辐射对米氏凯伦藻生长的影响   总被引:1,自引:0,他引:1  
为研究多环芳烃蒽(anthracene)和UV—B辐射对米氏凯伦藻(Kreniamikimotoi Hansen)的单独效应和联合毒性效应,采用实验生态学的方法,以米氏凯伦藻为实验材料,蒽质量浓度设为0.00、6.25、11.50、20.00、35.00、62.50μg/L,UV—B辐射剂量设为0.00、0.375、1.125、2.25、3.75、6.00J/m^2。实验结果表明:对米氏凯伦藻的生长,多环芳烃蒽具有抑制效应,小剂量的UV-B具有刺激作用,随着剂量的增加表现出抑制作用,蒽与UV—B的联合则表现出更强的抑制作用,二者表现为协同作用。蒽和UV—B对米氏凯伦藻的96h—EC。分别为15.35μg/L和2.843J/m^2,而蒽在UV—B辐射条件下的96h-EC50为7.376μg/L。  相似文献   

5.
In this review all recent field studies on the effects of UV-B radiation on bryophytes are discussed. In most of the studies fluorescent UV-B tubes are used to expose the vegetation to enhanced levels of UV-B radiation to simulate stratospheric ozone depletion. Other studies use screens to filter the UV-B part of the solar spectrum, thereby comparing ambient levels of UV-B with reduced UV-B levels, or analyse effects of natural variations in UV-B arising from stratospheric ozone depletion. Nearly all studies show that mosses are well adapted to ambient levels of UV-B radiation since UV-B hardly affects growth parameters. In contrast with outdoor studies on higher plants, soluble UV-B absorbing compounds in bryophytes are typically not induced by enhanced levels of UV-B radiation. A few studies have demonstrated that UV-B radiation can influence plant morphology, photosynthetic capacity, photosynthetic pigments or levels of DNA damage. However, there is only a limited number of outdoor studies presented in the literature. More additional, especially long-term, experiments are needed to provide better data for statistical meta-analyses. A mini UV-B supplementation system is described, especially designed to study effects of UV-B radiation at remote field locations under harsh conditions, and which is therefore suited to perform long-term studies in the Arctic or Antarctic. The first results are presented from a long-term UV-B supplementation experiment at Signy Island in the Maritime Antarctic.  相似文献   

6.
Variations in the amount of solar ultraviolet-B radiation (UV-B) reaching the biosphere may alter productivity in non-agricultural plants. We examined how ambient levels of UV-B modify the biomass of seven temperate-zone species including three grass species (Echinochloa crusgalli, Setaria faberi, Elymus virginicus), three forbs (Verbascum blattaria, Lactuca biennis, Oenothera parviflora), and one tree species (Quercus rubra). Plants were grown outside in enclosures near Morgantown, WV, USA (39° N, 79° W) for one season under near-ambient or no UV-B conditions. The different levels of UV-B were achieved using filters which differentially transmit UV-B irradiance. There was a trend towards reduced above-ground biomass in L. biennis (14%) and significantly increased above-ground biomass in O. parviflora (10.2%) under ambient UV-B. The partitioning of biomass between individual plant parts was altered by ambient UV-B in O. parviflora. Leaf biomass was significantly increased (18%), and there were trends toward increased stem (6.7%) and reproductive (9%) biomass. In addition to biomass stimulations, O. parviflora grew significantly taller (5.3%) under ambient UV-B. This study provides evidence that some non-agricultural plants exhibit species-specific growth responses to variable UV-B, with short-lived forbs appearing to be the most sensitive. If the biomass and morphological alterations observed for the forbs in this study were to persist over several years, they might modify population dynamics, competitive interactions, and productivity in ecosystems as UV-B levels fluctuate in the future.  相似文献   

7.
There is a lack of information comparing UV-B radiation conidial sensitivity of the biocontrol agent Clonostachys rosea (Cr) and its target pathogen, Botrytis cinerea (Bc). We investigated the interactions in vitro and on strawberry leaf discs between previously selected Cr and Bc strains tolerant to UV-B radiation. Strawberry leaf discs inoculated with Bc, Cr, or combinations of both fungi were exposed to UV-B doses (2.9, 5.9, and 8.9?kJ?m?2). Incidence and sporulation of both fungi were evaluated, and the Area Under Incidence Progress Curve (AUIPC) and Area Under Sporulation Progress Curve (AUSPC) were calculated. AUIPC and AUSPC of Cr on leaf discs were negatively correlated to increased UV-B. When inoculated alone on leaf discs, Bc was not affected by UV-B, but when inoculated with Cr the incidence and sporulation of Bc were positively correlated to UV-B radiation dose. In the absence of UV-B, Cr reduced incidence and sporulation of Bc. However, the ability of Cr to control Bc was reduced by 20% to 50% with increasing UV-B radiation. Increasing the applied concentration of Cr conidia 10-fold partially overcame the deleterious effects of UV-B on the ability of the biocontrol agent to reduce Bc sporulation in strawberry leaves. The selection of antagonists must fulfil many requirements; besides being active against the specific targeted plant pathogens, they must be cost-effective and have ecological characteristics suitable for the desired use conditions. We suggest that UV-B exposure must be taken into account during the development of bio-fungicides based on Cr.  相似文献   

8.
The aim of the present investigation was to define the role of soluble flavonoids as UV-B protectants in the primary leaf of barley (Hordeum vulgare L.). For this purpose we used a mutant line (Ant 287) from the Carlsberg collection of proanthocyanidin-free barley containing only 7% of total extractable flavonoids in the primary leaf as compared to the mother variety (Hiege 550/75). Seven-day-old leaves from plants grown under high visible light with or without supplementary UV-B radiation were used for the determination of UV-B sensitivity. UV-B-induced changes were assessed from parameters of chlorophyll fluorescence of photosystem II, including initial and maximum fluorescence, apparent quantum yield, and photochemical and non-photochemical quenching. A quartz fibre-optic microprobe was used to evaluate the amount of potentially harmful UV-B (310 nm radiation) penetrating into the leaf as a direct consequence of flavonoid deficiency. Our data indicate an essential role of flavonoids in UV-B protection of barley primary leaves. In leaves of the mutant line grown under supplementary UV-B, an increase in 310nm radiation in the mesophyll and a strong decrease in the quantum yield of photosynthesis were observed as compared to the corresponding mother variety. Primary leaves of liege responded to supplementary UV-B radiation with a 30% increase in the major flavonoid saponarin and a 500% increase in the minor compound lutonarin. This is assumed to be an efficient protective response since no changes in variable chlorophyll fluorescence were apparent. In addition, a further reduction in UV-B penetration into the mesophyll was recorded in these leaves.  相似文献   

9.
The effects of UV-B radiation on European heathland species   总被引:9,自引:0,他引:9  
Björn  L. O.  Callaghan  T. V.  Johnsen  I.  Lee  J. A.  Manetas  Y.  Paul  N. D.  Sonesson  M.  Wellburn  A. R.  Coop  D.  Heide-Jørgensen  H. S.  Gehrke  C.  Gwynn-Jones  D.  Johanson  U.  Kyparissis  A.  Levizou  E.  Nikolopoulos  D.  Petropoulou  Y.  Stephanou  M. 《Plant Ecology》1997,128(1-2):253-264
The effects of enhanced UV-B radiation on three examples of European shrub-dominated vegetation were studied in situ. The experiments were in High Arctic Greenland, northern Sweden and Greece, and at all sites investigated the interaction of enhanced UV-B radiation (simulating a 15% reduction in the ozone layer) with artificially increased precipitation. The Swedish experiment also involved a study of the interaction between enhanced UV-B radiation and elevated CO2 (600 ppm). These field studies were supported by an outdoor controlled environment study in the United Kingdom involving modulated enhancement of UV-B radiation in combination with elevated CO2 (700 ppm). Effects of the treatments on plant growth, morphology, phenology and physiology were measured. The effects observed were species specific, and included both positive and negative responses to the treatments. In general the negative responses to UV-B treatments of up to three growing seasons were small, but included reductions in shoot growth and premature leaf senescence. Positive responses included a marked increase in flowering in some species and a stimulation of some photosynthetic processes. UV-B treatment enhanced the drought tolerance of Pinus pinea and Pinus halepensis by increasing leaf cuticle thickness. In general, there were few interactions between the elevated CO2 and enhanced UV-B treatments. There was evidence to suggest that although the negative responses to the treatments were small, damage may be increasing with time in some long-lived woody perennials. There was also evidence in the third year of treatments for effects of UV-B on insect herbivory in Vaccinium species. The experiments point to the necessity for long-term field investigations to predict the likely ecological consequences of increasing UV-B radiation.  相似文献   

10.
紫外辐射增强对植物糖代谢的影响   总被引:1,自引:0,他引:1  
李元  张翠萍  祖艳群 《生态学杂志》2006,25(10):1265-1268
综述了UV-B辐射增强对植物叶片、茎、根、果实以及籽粒中糖含量影响的研究现状与动态,从生理学角度分析了UV-B辐射对植物糖含量和糖代谢相关的一些重要反应及其影响植物糖含量和糖代谢的关键酶的响应,并从植物的光合碳固定、糖的合成与分解等方面阐述了UV-B影响糖含量及糖代谢的可能机理。展望了今后紫外辐射增强对植物糖代谢影响的研究重点和研究方向。  相似文献   

11.
Attenuation of ultraviolet (UV)-radiation into the water column is highly correlated with the concentration of the dissolved organic matter (DOM). Thus UV penetrates deeper into marine waters than into freshwater systems. DOM is efficiently cleaved by solar surface radiation levels consuming more oxygen than bacterial metabolism. This photolytically cleaved DOM exhibits higher absorbance ratios (250/365 nm) than untreated DOM. Natural bacterioplankton reach higher abundance if inoculated in previously solar-exposed DOM than in untreated DOM; during bacterial growth the absorbance ratio declines steadily indicating the utilization of the photolytically cleaved DOM. On the other hand, bacterioplankton are greatly reduced in their activity if exposed to surface solar radiation levels. Photoenzymatic repair of DNA induced by UV-A radiation, however, leads to an efficient recovery of bacterial activity once the UV-B stress is released. Turbulent mixing of the upper layers of the water column leads to a continuous alteration of the UV exposure regime. Close to the surface, bacteria and DOM are exposed to high levels of UV-B leading to a reduction in bacterial activity and to photolysis of DOM. Once mixed into deeper layers where UV-B is attenuated, but sufficient UV-A is remaining to allow photoenzymatic repair, the photolytically cleaved DOM is efficiently taken up by bacterioplankton leading to even higher bacterial activity than prior to the exposure. Thus, the overall effect of UV on bacterioplankton is actually an enhancement of bacterial activity despite their lack of protective pigments.  相似文献   

12.
Stephanou  M.  Manetas  Y. 《Plant Ecology》1998,134(1):91-96
Seedlings of the Mediterranean shrub Cistus creticus L. were grown in the field under ambient or ambient plus supplemental UV-B radiation (simulating a 15% ozone depletion over Patras, 38.3°W, 29.1°E) for 20 months. During this period, measurements of photosynthetic capacity, photochemical efficiency of PS II, chlorophylls and carotenoids were performed once per season. Supplemental UV-B radiation had no significant effect on these parameters nor on the total, above ground biomass accumulation, plant height and leaf specific mass measured at plant harvest. It was observed, however, that UV-B supplementation increased the number of seeds per fruit as well as mean individual seed mass. As a result, seed number and total seed mass per plant were considerably increased. Germination rates of produced seeds were not affected. We may conclude that C. creticus is a UV-B resistant plant whose competitive ability may be improved by enhanced UV-B radiation through an increase in its reproductive effort and a higher contribution to the seed bank.  相似文献   

13.
Deckmyn  Gaby  Impens  Ivan 《Plant Ecology》1997,128(1-2):235-240
The interactive effects of N-deficiency and enhanced UV-B radiation on growth, photosynthesis and pigmentation of rye were studied. The plants were grown for 5 weeks in growth chambers with high (700 mol m-2 s-2) irradiance levels. A 30% difference in UV-B at plant level was achieved by using different thicknesses of UV-B transparent Plexiglass. One half of the plants received optimal N nutrition, while the other received half of this dose. Both enhanced UV-B and N deficiency strongly decreased production (from 24–33%). The combined effect was additive (no interaction) on most parameters, including total dry weight production which was 52% lower than in the control series. Significant interaction was found on the root/shoot ratio. While reduced N supply induced an increase in the ratio at normal UV-B irradiation, under the increased UV-B, N deficiency had no effect on the root/shoot ratio. The reduced biomass due to UV-B was clearly correlated to a reduction in photosynthesis. At optimal N supply the plants increased the production of protective pigments in response to UV-B, but at reduced N supply this response was lacking. The increased N content of the high UV-B/high N plants could be a result of increased flavonoid production as well as changes in light penetration in the canopy.  相似文献   

14.
The acute radiation syndrome (ARS) occurs after whole-body or significant partial-body irradiation (typically at a dose of >1 Gy). ARS can involve the hematopoietic, cutaneous, gastrointestinal and the neurovascular organ systems either individually or in combination.There is a correlation between the severity of clinical signs and symptoms of ARS and radiation dose. Radiation induced multi-organ failure (MOF) describes the progressive dysfunction of two or more organ systems over time. Radiation combined injury (RCI) is defined as radiation injury combined with blunt or penetrating trauma, burns, blast, or infection. The classic syndromes are: hematopoietic (doses >2–3 Gy), gastrointestinal (doses 5–12 Gy) and cerebrovascular syndrome (doses 10–20 Gy). There is no possibility to survive after doses >10–12 Gy.The Phases of ARS are—prodromal: 0–2 days from exposure, latent: 2–20 days, and manifest illness: 21–60 days from exposure.Granulocyte-colony stimulating factor (G-CSF) at a dose of 5 μg/kg body weight per day subcutaneously has been recommended as treatment of neutropenia, and antibiotics, antiviral and antifungal agents for prevention or treatment of infections.If taken within the first hours of contamination, stable iodine in the form of nonradioactive potassium iodide (KI) saturates iodine binding sites within the thyroid and inhibits incorporation of radioiodines into the gland.Finally, if severe aplasia persists under cytokines for more than 14 days, the possibility of a hematopoietic stem cell (HSC) transplantation should be evaluated.This review will focus on the clinical aspects of the ARS, using the European triage system (METREPOL) to evaluate the severity of radiation injury, and scoring groups of patients for the general and specific management of the syndrome.  相似文献   

15.
Lud  D.  Huiskes  A.H.L.  Moerdijk  T.C.W.  Rozema  J. 《Plant Ecology》2001,154(1-2):87-99
We report a long-term experiment on the photosynthetic response of natural vegetation of Deschampsia antarctica (Poaceae) and Turgidosculum complicatulum (Lichenes) to altered UV-B levels on Léonie Island, Antarctica.UV-B above the vegetation was reduced by filter screens during two seasons. Half of the screens were transparent to UV-A and UV-B (ambient treatment) or absorbing UV-B and part of the UV-A (below-ambient treatment). Half of the wedge- shaped filters had side walls leading to an enhancement of the daily mean temperature in summer by 2–4 °C, simulating rising mean air temperature on the Antarctic Peninsula. The other half of the filters were without side walls resulting in close-to-ambient temperature underneath. Plots without filters served as controls.UV-B supplementation of an extra 1.3 kJ UV-BBE was achieved using UV-mini-lamp systems during 15 days in the second season.We found no evidence that altered incident UV-B levels and temperature had an effect on maximum photosystem II efficiency (F v/F m) and effective photosystem II efficiency (F/F m) in both species. UV-B reduction did not influence contents of chlorophyll, carotenoids and methanol-soluble UV absorbing compounds in D. antarctica.Flowering shoot length of D. antarctica was not affected by UV-B reduction. Temperature enhancement tended to result in longer inflorescence axes. Results of two austral summer seasons of UV- reduction in natural stands of D. antarctica and T. complicatulum suggest that current ambient levels of UV-B do not have a direct effect on the photosynthetic performance and pigment contents of these species. Cumulative effects on growth have not been recorded after two years but can not be excluded on a longer term.  相似文献   

16.
17.
Influences of UV-B radiation on Rhizophora apiculata were studied in terms of chlorophylls, their presence in protein complexes of the chloroplast, PS I and PS II photochemical activities, in vitro absorption spectrum of the chloroplast, in vivo leaf fluorescence and UV absorbing compounds. The seedlings were exposed to the various levels of UV-B radiations, equivalent to 0 (control), 10, 20, 30 and 40% stratospheric ozone depletion of the study area. The low doses of UV-B (10 and 20%) increased the reaction centre chlorophyll (10 and 8%) and activities of PS-I (98 and 39%) and PS-II (77 and 38%) respectively; whereas, 30 and 40% UV-B treatments decreased the reaction centre chlorophylls by 11 and 33% and PS II activity by 0 and 20%; while PS I activity did not show any inhibitory effect. Chloroplasts isolated from control and 10% UV-B treated plants exhibited the same level of absorption at 676 nm. In vivo leaf fluorescence was found to be diminished with UV-B radiation and at the 10% UV-B, variable fluorescence was promoted significantly by 10%. The content of UV-absorbing compounds was progressively enhanced with doses of UV-B radiation along with higher absorption at 276 and 330 nm.  相似文献   

18.
Gaberščik  Alenka  Novak  Mateja  Trošt  Tadeja  Mazej  Zdenka  Germ  Mateja  Björn  Lars-Olof 《Plant Ecology》2001,154(1-2):49-56
Pulmonaria officinalis is an understorey spring geophyte, which starts its vegetative period before full foliation of the tree storey. During its early growth phase it is exposed to full solar radiation, therefore the enhanced UV-B radiation could present a threat to this species. An outdoor experiment in which potted plants were exposed to below ambient, ambient, and above ambient (corresponding to 17% ozone reduction) UV-B radiation, was conducted in order to evaluate the radiation effects. The amount of photosynthetic pigments and photochemical efficiency of PSII were not affected, but the amount of UV-B absorbing compounds was lower in plants grown under reduced UV-B. This change was measurable after only fourteen days in reproductive shoots, while in the vegetative shoots, it was not detectable until after three months. The leaves of P. officinalis are variegated and the light green spots became less transparent to PAR under enhanced UV-B. The results reveal that under simulated 17% ozone depletion the harmful effects of UV-B on the measured parameters were negligible.  相似文献   

19.
Huiskes  A.H.L.  Lud  D.  Moerdijk-Poortvliet  T.C.W. 《Plant Ecology》2001,154(1-2):75-86
Patches of vegetation of six common species growing on Léonie Island (67°35 S, 68°20 W), Antarctic Peninsula region were covered with either UV-B transparent perspex screens or UV-B absorbing screens. Uncovered plots served as a control. Temperature and relative humidity were monitored during the austral summer under and outside the screens. The mean effective PSII quantum efficiency showed significant differences among the species, but not between the UV-B treatments. It was concluded that the temperature and the moisture status of the vegetation obscured any possible influence of UV-B treatment on the tteffective PSII quantum efficiency. he usefulness of various UV-B exclusion and supplementation methods used to study the influence of UV-B in the field is discussed.  相似文献   

20.
Hypocotyl elongation responses to ultraviolet-B (UV-B) radiation were investigated in glasshouse studies of de-etiolated seedlings of a long-hypocotyl mutant ( lh ) of cucumber ( Cucumis sativus L.) deficient in stable phytochrome, its near isogenic wild type (WT), and a commercial cucumber hybrid (cv. Burpless). A single 6- or 8-h exposure to UV-B applied against a background of white light inhibited hypocotyl elongation rate by ca 50% in lh and WT seedlings. This effect was not accompanied by a reduction in cotyledon area expansion or dry matter accumulation. Plants recovered rapidly from inhibition and it was possible to stimulate hypocotyl elongation in plants exposed to UV-B by application of gibberellic acid. In all genotypes inhibition of elongation was mainly a consequence of UV-B perceived by the cotyledons; covering the apex and hypocotyl with a filter that excluded UV-B failed to prevent inhibition. These results indicate that reduced elongation does not result from assimilate limitation or direct damage to the apical meristem or elongating cells, and strongly suggest that it is a true photomorphogenic response to UV-B. The fact that UV-B fluences used were very low in relation to total visible light, and the similarity in the responses of lh and wild-type plants, are consistent with the hypothesis that UV-B acts through a specific photoreceptor. It is argued that, given the weak correlation between UV-B and visible-light levels in most natural conditions, the UV-B receptor may play an important sensory function providing information to the plant that cannot be derived from light signals perceived by phytochrome or blue/UV-A sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号