首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The urinary protein excreted in heavy-chain disease was separated by ion-exchange chromatography into two broad fractions designated Cra-1 and Cra-2. For a dimeric molecular weight of approx. 51000, Cra-1 contained 3-4 residues of 6-deoxy-l-galactose (l-fucose), 10 of d-mannose, 5-6 of d-galactose, 12 of 2-acetamido-2-deoxy-d-glucose (N-acetyl-d-glucosamine) and 4-5 of N-acetylneuraminic acid (sialic acid), whereas the corresponding values for Cra-2 were 2, 10, 7, 12 and 7. Cra-2 contained in addition 1 residue of 2-acetamido-2-deoxy-d-galactose (N-acetyl-d-galactosamine). Cra-1 contained an average of four oligosaccharide units, two of which contained 1 residue of 6-deoxy-l-galactose, 3 of d-mannose, 1 of d-galactose and 3 of 2-acetamido-2-deoxy-d-glucose, whereas the other two units contained the same proportions of 6-deoxy-l-galactose, d-mannose and 2-acetamido-2-deoxy-d-glucose but 2 residues of d-galactose and 2 of N-acetylneuraminic acid. Cra-2 also contained an average of four oligosaccharide units, but the range of glycopeptides was much wider, containing 0-1 residue of 6-deoxy-l-galactose, 2-3 of d-mannose, 2-3 of d-galactose, 2-3 of 2-acetamido-2-deoxy-d-glucose and 1-3 of N-acetylneuraminic acid. Possible reasons for this heterogeneity are discussed. Glycopeptides were also isolated from Cra-2 that contained 1 residue of d-mannose, 2 of d-galactose, 1 of 2-acetamido-2-deoxy-d-galactose and 0-3 of N-acetylneuraminic acid.  相似文献   

2.
Glycopeptides of immunoglobulins: Investigations on IgA myeloma globulins   总被引:3,自引:2,他引:1  
The oligosaccharide units of a type K and a type L IgA immunoglobulin have been examined. The two proteins differed in their content of 6-deoxy-l-galactose and N-acetylneuraminic acid, and in the d-mannose/d-galactose ratio. With glycopeptides prepared from the type K protein, specific glycosidases liberated the N-acetylneuraminic acid and 7-8 residues of 2-acetamido-2-deoxy-d-glucose, and mild acid hydrolysis released most of the 6-deoxy-l-galactose. The type K immunoglobulin appeared to contain 3 oligosaccharide units, whereas the type L protein probably contained 3 or more units.  相似文献   

3.
As a prelude to studies using bovine N-acetylglucosaminide-β-(1→4)-galactosyltransferase to label membrane-surface glycoproteins with isotopically enriched d-galactose, the structural specificity of the enzymic reaction with water-soluble, hen ovalbumin has been examined. The enzyme-catalyzed transfer of d-galactose from UDP-d-galactose requires a (nonreducing) terminal 2-acetamido-2-deoxy-d-glucosyl group and exhibits selectivity towards saccharide chains containing d-mannose. This study considers the structural specificity of the enzyme with regard to the anomeric linkage between 2-acetamido-2-deoxy-d-glucose and d-mannose in the carbohydrate chains of hen ovalbumin. Uniformly 13C-enriched d-galactose was enzymically attached to the ovalbumin carbohydrate chain (which exhibits microheterogeneity in its structure), the protein was hydrolyzed, and separate glycopeptide fractions were chromatographically isolated. The 13C-n.m.r. spectra (60.5 MHz) of the fractions revealed two peaks for the anomeric carbon atom of d-galactose. The two peaks, at 104.20 and 104.39 p.p.m., were ascribed to d-galactosyl groups attached to 2-acetamido-2-deoxy-d-glucose respectively linked β-(1→4) and β-(1→2), to d-mannose in the glycopeptide chains. Quantifying of the spectral data revealed no specificity of d-galactosyltransferase towards the linkage from the terminal 2-acetamido-2-deoxy-d-glucosyl group to the penultimate d-mannosyl residue.  相似文献   

4.
A study of the carbohydrate present in three type K macroglobulins   总被引:5,自引:4,他引:1       下载免费PDF全文
For a monomeric molecular weight of 180000 three type K macroglobulins (IgM) contained 6-deoxygalactose, mannose, galactose, 2-acetamido-2-deoxyglucose and N-acetylneuraminic acid in the molar proportions 5:38:11:27:7 for Row IgM, 5:31:9:21:7 for Sha IgM, and 5:29:11:26:8 for Tya IgM. The first two proteins were euglobulins whereas Tya IgM was a pseudoglobulin, and therefore the total content of carbohydrate does not appear to be related to the physicochemical properties of the proteins. The three proteins appeared to contain different numbers of oligosaccharide units, Row IgM having about ten units/monomer, and Sha IgM and Tya IgM about eight each. All three proteins had two types of oligosaccharide unit, which by analogy with an immunoglobulin A myeloma globulin were called Type 2 and Type 3 respectively. The Type 2 units had molecular weights equal to or greater than 2000 and contained 1 residue of 6-deoxygalactose, 3-4 of mannose, 1-2 of galactose, 3-4 of 2-acetamido-2-deoxyglucose and 0-2 of N-acetylneuraminic acid. The Type 3 units had molecular weights of less than 2000 and contained 0-1 residue of 6-deoxygalactose, 3-6 of mannose, 0-1 of galactose, 1-3 of 2-acetamido-2-deoxyglucose and no N-acetylneuraminic acid. Glycopeptides corresponding to the two types of unit varied in their aspartic acid content in that most of the Type 3 glycopeptides possessed only 1 residue of aspartic acid whereas most of the Type 2 glycopeptides had an average content greater than 1 residue.  相似文献   

5.
A human, alveolar glycoprotein having an apparent mol. wt. of 250 000 gave two major glycopeptide fractions (I and II) by Pronase digestion, followed by gel filtration, DEAE-cellulose column chromatography, paper chromatography, and paper electrophoresis. Glycopeptide I contained d-galactose, d-mannose, 2-acetamido-2-deoxy-d-glucose, and N-acetylneuraminic acid in the molar ratio of 2:3:4:1, whereas these sugars were present in Glycopeptide II in the molar ratio of 2:3:4:2.l-Fucose was present only in Glycopeptide II at a concentration of one l-fucose per three d-mannose residues. In both glycopeptides, 2-acetamido-2-deoxy-d-glucose was linked to an asparagine residue of the peptide chain. Based on the results of alkaline borohydride treatment, periodate oxidation, methlylation analysis, and sequential glycosidase degradation of the glycopeptides, tentative structures are proposed for both glycopeptides.  相似文献   

6.
A sialomucin from mouse submandibular glands was treated with mild base-Me2SO. This treatment cleaves O-glycosylically linked oligosaccharides, but preserves the integrity of the protein core. After treatment with mild base-Me2SO, 49.2% (by weight) of the oligosaccharides were removed from the polypeptide; they were composed of residues of 2-acetamido-2-deoxy-d-glucose, 2-acetamido-2-deoxy-d-galactose, sialic acid, and d-galactose. These oligosaccharides were linked O-glycosylically via 2-acetamido-2-deoxy-d-galactose. Chromatography of the base-Me2-SO-treated mucin on Sephacryl S-300 indicated that the protein core, with its base-resistant oligosaccharides, is a single, high-molecular-weight species. The mild-base-resistant linkages remaining on the protein core (50.8% of the total carbohydrates by weight) also contained d-mannose. The presence of these mild-base-resistant linkages, and the formation of 2-acetamido-2-deoxy-d-glucitol following treatment with m NaOH-m NaBH4, confirmed the presence of N-glycosylic linkages.  相似文献   

7.
High-capacity adsorbents for lectins, including Lotus tetragonolobusl-fucose-binding protein, were readily prepared by conjugation of monosaccharides with commercially available, epoxy-activated Sepharose. Purified, radioiodinated lectins were bound to cells of the mosquito Aedes aegyptii and of human KB tumour. Relative to human KB cells, mosquito cells bound less of lectins specific for the sugars (l-fucose and d-galactose) that are terminal residues in many mammalian glycoproteins, whereas the number of binding sites of lectins specific for core-region sugars (d-mannose and 2-acetamido-2-deoxy-d-glucose) were similar. Neuraminidase, which greatly enhanced binding of peanut agglutinin or soybean agglutinin to human KB cells, had negligible effects on binding of these lectins to mosquito cells. The comparative structures of surface oligosaccharides of mosquito and KB cells are discussed in relation to the lectin-binding studies.  相似文献   

8.
The contents of fucose, mannose, galactose, glucose, 2-acetamido-2-deoxy-d-glucose and -d-galactose, and sialic acid, when the results were expressed as nmol per mg of membrane dry-weights, were found to be significantly lower in the membranes of old erythrocytes than in the membranes of young ones. No significant difference was found between young and old membranes when the compositions were expressed as residues per one hundred carbohydrate residues, suggesting that a homogeneous decrease of the carbohydrate moieties may occur during aging in vivo.  相似文献   

9.
The structure of an antigenic, sulfated glycoprotein from chick chorioallantoic fluid has been investigated by exogalactosidase digestion, methylation and mass spectral analyses, periodate oxidation, and Smith degradation. The main carbohydrate chains are composed of D-galactosyl residues linked at C-3 and 2-acetamido-2-deoxyglucose residues linked at C-4. Fucose and N-acetylneuraminic acid residues are nonreducing terminal groups, and the N-acetylneuraminic acid groups are linked to the D-galactose residues at C-3. Most of the sulfate groups (91% of the sulfate) are located on C-6 of the 2-acetamido-2-deoxyglucose residues, and the rest on C-6 of the D-galactose residues. A large number of the D-galactose residues (36.9% of the total) are present as nonreducing terminal groups and another 21.7% of the D-galactose residues are in penultimate position to the nonreducing terminal N-acetylneuraminic acid residues. Although mild periodate oxidation indicates the presence of D-galactose in furanoside form (5.5% of total D-galactose), no 5-O-methyl derivative of D-galactose was observed on methylation.  相似文献   

10.
CTLA4 is a membrane receptor on cytotoxic T cells whose interaction with the B7 counterreceptor on B cells is important in alloantigen responses. Soluble recombinant human and murine CTLA4 were produced using either Chinese hamster ovary or NS-0 cell lines. Expression vectors were constructed containing the gene coding for the extracellular domain of CTLA4 fused to either human lgG1 hinge, CH2, and CH3 domains or murine lgG2a hinge, CH2, and CH3 domain genes. These glycoproteins were produced in hollow-fiber or packed-bed-type bioreactors and purified from conditioned media by protein A affinity chromatography. Batches of purified CTLA4lg were analyzed for size, composition, and isoelectric point (pl) patterns by standard protein methods; oligosaccharide and monosaccharide profiles using several carbohydrate specific techniques; and in vivo clearance profiles using a murine model. Significant differences were observed between lots in their pl, clearance, and crbohydrate profiles. Higher overall pl values correlated with accelerated alpha-phase clearance and changes in oligosaccharide composition as determined by lectin binding analysis and electrophoresis of fluorophore-conjugated carbohydrates. Preparations exhibiting slower clearance profiles had oligosaccharides with higher quantities of N-acetylneuraminic acid and were predominantly of an N-linked biantennary complex-type. Conversely, batches with accelerated clearance profiles had less detectable N-acetylneuraminic acid. Oligosaccharides from murine CTLA4lg produced in NS-0 cells had terminal N-glycolylneuraminic acid but no detectable N-acetylneuraminic acid and had concomitant accelerated clearance. These data suggest that the presence and quantity of N-acetylneuraminic acid is an important component in predicting CTLA4lg plasma clearance rates and that production lots can be analyzed for oligosaccharide heterogeneity and sialic acid content by electrophoresis of fluorophore-conjugated carbohydrates. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
The anomeric specificity of six sialidases (Vibrio cholerae, Arthrobacter ureafaciens, Clostridium perfringens, Newcastle disease virus, fowl plague virus and influenza A2 virus sialidases) was assessed with sialylated antifreeze glycoprotein, ovine submandibular gland glycoprotein and alpha 1-acid glycoprotein, resialylated specifically in alpha(2-3) or alpha(2-6) linkage with N-acetylneuraminic acid or N-glycolylneuraminic acid using highly purified sialyltransferases. The rate of release of sialic acid from these substrates was found to correlate well with the specificity observed earlier with the same sialidases using small oligosaccharide substrates, i.e., alpha(2-3) glycosidic linkages are hydrolyzed faster than alpha(2-6) linkages, with the exception of the enzyme from A. ureafaciens. Sialidase activity was higher with N-acetylneuraminic acid when compared with N-glycolylneuraminic acid. The studies also showed that the core oligosaccharide and protein structure in glycoproteins may influence the rate of release for different glycosidic linkages.  相似文献   

12.
The O-polysaccharide (OPS) was obtained from the lipopolysaccharide of Pseudomonas syringae pv. delphinii NCPPB 1879(T) and studied by sugar and methylation analyses, Smith degradation, and (1)H- and (13)C-NMR spectroscopy. The OPS was found to contain residues of L-rhamnose (L-Rha) and 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc), and the following structure of the major (n = 2) and minor (n = 3) heptasaccharide repeating units of the OPS was established: [carbohydrate structure: see text]. The OPS is distinguished by the presence of oligosaccharide side chains consisting of three D-Fuc3NAc residues that are connected to each other by the (alpha 1-->2)-linkage. The OPS is characterized by a structural heterogeneity due to a different position of substitution of one of the four L-rhamnose residues in the main chain of the repeating unit as well as to the presence of oligosaccharide units with an incomplete side chain.  相似文献   

13.
1. The carbohydrate composition of the monomeric unit of a type L macroglobulin (immunoglobulin M) was determined as 6 residues of fucose, 35 of mannose, 11 of galactose, 27 of N-acetylglucosamine and 9 of sialic acid. 2. Two types of oligosaccharide unit were present in the protein, one of which (Ca type) contained fucose, mannose, galactose, N-acetylglucosamine and sialic acid in the molar proportions 1:3-4:2:3-5:0-2, and the other (Cb type) contained mannose and N-acetylglucosamine in the proportions 6-8:2-3. 3. A tentative structure is proposed for the Cb type unit. 4. An S-carboxymethylcysteine-containing glycopeptide with a Ca-type unit was isolated after reduction, alkylation and tryptic digestion of the protein. 5. The immunoglobulin monomer appears to contain six oligosaccharide units of the Ca type and two of the Cb type.  相似文献   

14.
Anomeric pairs of some alkyl 1-thioaldopyranosides of d-galactose, d-glucose, d-mannose, 2-acetamido-2-deoxy-d-glucose, 2-acetamido-2-deoxy-d-galactose, and l-fucose were prepared. The per-O-acetylated, 1,2-trans anomers of 6-(trifluoroacetamido)hexyl 1-thioaldopyranosides and 5-(methoxycarbonyl)pentyl 1-thioaldopyranosides were anomerized with boron trifluoride in dichloromethane. The anomeric mixtures were then separated by chromatography, using columns of either silica gel or an ion-exchange resin. De-blocking of the separated compounds provided pure anomers of 6-aminobexyl 1-thioaldopyranosides or 5-carboxypentyl 1-thioaldopyranosides. The aglycons of the latter glycosides were further extended by reaction with aminoacetaldehyde diethyl acetal, which, after deacetalization of the products, provided an ω-aldehydo group. These series of glycosides could be readily coupled to proteins or solid matrices.  相似文献   

15.
W A Emerson  S Kornfeld 《Biochemistry》1976,15(8):1697-1703
The major glycoprotein of the bovine erythrocyte membrane was purified by extraction of the ghosts with lithium 3,5-diiodosalicylate followed by phenol-water extraction and acidification. The glycoprotein contains 20% protein and 80% carbohydrate by weight and gives a single band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight of 230000 daltons. The carbohydrate composition of the glycoprotein was determined to be (in residues relative to sialic acid): sialic acid, 1.0; fucose, less than 0.01; mannose, 0.1; galactose, 3.3; N-acetylgalactosamine, 0.9; and N-acetylglucosamine, 2.4. Pronase digestion of the isolated glycoprotein followed by Sephadex G-75 gel filtration resulted in the separation of a small pool of glycopeptides (pool III), which included all of the mannose-containing glycopeptides, from the bulk of the glycopeptide material which was in the void fractions of the column (pool I). Alkaline borohydride treatment released over 95% of the oligosaccharide units in pool I and approximately 30% of the oligosaccharide units in pool III. These oligosaccharides were isolated by gel filtration and ion-exchange chromatography. The oligosaccharides released from pool I had molecular weights of 1100-1400 daltons and contained sialic acid, galactose, and N-acetylglucosamine in molar ratios of 0.5-1:3:2 as well as a partial residue of N-acetylgalactosaminitol. The oligosaccharides released from pool III by alkali had molecular weights of 1300-1600 daltons and contained sialic acid, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-ACETYLgalactosaminitol in molar ratios of 1-2:2:1:1:1. These data indicate that the majority of the oligosaccharide units of the bovine erythrocyte glycoprotein are linked O-glycosidically to the peptide backbone of the molecule.  相似文献   

16.
1. Glycopeptides were prepared from proteolytic digests of ovotransferrin and serum transferrin of the hen. The carbohydrate compositions and amino acid sequences of the peptides were studied. 2. The bulk of the carbohydrate of ovotransferrin is present as a single oligosaccharide composed of 4 residues of mannose and 8 residues of N-acetylglucosamine. Transferrin has most of its carbohydrate in a single unit composed of 2 residues of mannose, 2 residues of galactose, 3 residues of N-acetylglucosamine and either 1 or 2 residues of sialic acid. 3. The amino acid sequences of the glycopeptides carrying these different oligosaccharides are the same in ovotransferrin and serum transferrin, showing that the carbohydrate groups are attached to the same site on the protein molecule.  相似文献   

17.
Nakano M  Kakehi K  Tsai MH  Lee YC 《Glycobiology》2004,14(5):431-441
We analyzed carbohydrate chains of human, bovine, sheep, and rat alpha1-acid glycoprotein (AGP) and found that carbohydrate chains of AGP of different animals showed quite distinct variations. Human AGP is a highly negatively charged acidic glycoprotein (pKa = 2.6; isoelectic point = 2.7) with a molecular weight of approximately 37,000 when examined by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and contains di-, tri-, and tetraantennary carbohydrate chains. Some of the tri- and tetraantennary carbohydrate chains are substituted with a fucose residue (sialyl Lewis x type structure). In sheep AGP, mono- and disialo-diantennary carbohydrate chains were abundant. Tri- and tetrasialo-triantennary carbohydrate chains were also present as minor oligosaccharides, and some of the sialic acid residues were substituted with N-glycolylneuraminic acid. In rat AGP, very complex mixtures of disialo-carbohydrate chains were observed. Complexity of the disialo-oligosaccharides was due to the presence of N, O-acetylneuraminic acids. Triantennary carbohydrate chains carrying N,O-acetylneuraminic acid were also observed as minor component oligosaccharides. We found some novel carbohydrate chains containing both N-acetylneuraminic acid and N-glycolylneuraminic acid in bovine AGP. Interestingly, triantennary carbohydrate chains were hardly detected in bovine AGP, but diantennary carbohydrate chains with tri- or tetrasialyl residues were abundant. Furthermore the major sialic acid in these carbohydrate chains was N-glycolylneuraminic acid. It should be noted that these sialic acids are attached to multiple sites of the core oligosaccharide and are not present as disialyl groups.  相似文献   

18.
Alkaline hydrolysis followed by deamination with nitrous acid was applied for the first time to a glycoprotein, human plasma alpha(1)-acid glycoprotein (orosomucoid). This procedure, which specifically cleaves the glycosaminidic bonds, yielded well-defined oligosaccharides. The trisaccharides, which were obtained from the native protein, consisted of a sialic acid derivative, galactose and 2,5-anhydromannose. The linkage between galactose and 2,5-anhydromannose is most probably a (1-->4)-glycosidic bond. A hitherto unknown linkage between N-acetylneuraminic acid and galactose was also established, namely a (2-->2)-linkage. The three linkages between sialic acid and galactose described in this paper appear to be about equally resistant to mild acid hydrolysis. The disaccharide that was derived from the desialized glycoprotein consisted of galactose and 2,5-anhydromannose. Evidence was obtained for the presence of a new terminal sialyl-->N-acetylglucosamine disaccharide accounting for approximately 1mol/mol of protein. The presence of this disaccharide may explain the relatively severe requirements for the complete acid hydrolysis of the sialyl residues. The present study indicates that alkaline hydrolysis followed by nitrous acid deamination in conjunction with gas-liquid chromatography will afford relatively rapid determination of the partial structure of the complex carbohydrate moiety of glycoproteins.  相似文献   

19.
An azidoaryl thioglycoside of sialic acid was prepared, as a potential photoaffinity probe reagent for the analysis of sialidases and sialic acid-binding proteins, by treatment of the glycosyl chloride of N-acetylneuraminic acid methyl ester with potassium thioacetate to give, in 70% yield, methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2-S-acetyl-2,3,5-trideoxy-2-thio-alph a-D- glycero-D-galacto-2-nonulopyranosonate. Selective hydrolysis of the thioacetate ester, followed by condensation with 4-fluoro-3-nitrophenyl azide, O-deacetylation, and hydrolysis gave (4-azido-2-nitrophenyl)- 5-acetamido-2,3,5-trideoxy-2-thio-alpha-D-glycero-D-galacto-2- nonulopyranosidonic acid.  相似文献   

20.
The role of the carbohydrate component of sex steroid-binding globulin (SBP) from human blood in the glycoprotein interaction with the recognition system for SBP-estrogen complexes in human decidual endometrium plasma membrane was studied. It was shown that the removal of N-acetylneuraminic acid residues from the oligosaccharide chains of SBP did not affect the steroid-binding or immunochemical properties of the glycoprotein. At the same time, the above modification of the glycoprotein resulted in a loss by SBP of its ability to specifically interact with the membrane recognition system. It is concluded that the oligosaccharide chains of SBP are involved in the formation of determinants needed for recognition of the SBP-estrogen complexes by endometrium cell plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号